scholarly journals Validation of a Fixed Bed Reactor Model for Dimethyl Ether Synthesis Using Pilot-Scale Plant Data

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1522
Author(s):  
Daesung Song ◽  
Sung Yong Cho ◽  
Thang Toan Vu ◽  
Yen Hoang Phi Duong ◽  
Eunkyu Kim

The one-dimensional (1D) mathematical model of fixed bed reactor was developed for dimethyl ether (DME) synthesis at pilot-scale (capacity: 25–28 Nm3/h of syngas). The reaction rate, heat, and mass transfer equations were correlated with the effectiveness factor. The simulation results, including the temperature profile, CO conversion, DME selectivity, and DME yield of the outlet, were validated with experimental data. The average error ratios were below 9.3%, 8.1%, 7.8%, and 3.5% for the temperature of the reactor, CO conversion, DME selectivity, and DME yield, respectively. The sensitivity analysis of flow rate, feed pressure, H2:CO ratio, and CO2 mole fraction was investigated to demonstrate the applicability of this model.

2013 ◽  
Vol 15 (2) ◽  
pp. 122-127 ◽  
Author(s):  
Ziyang Bai ◽  
Hongfang Ma ◽  
Haitao Zhang ◽  
Weiyong Ying ◽  
Dingye Fang

The production processes included catalytic dehydration of methanol in an adiabatic fixed-bed reactor and two columns product separations. In this study, the technological process for dimethyl ether (DME) synthesis is built on PRO/II platform based on the combined parameters of the reaction dynamic model for methanol dehydration reaction, the improved NRTL model of the liquid phase, the PR model of vapor phase. In order to validate the proposed model, the simulation results have been compared with the available data from a set of industrial production equipment with a production capacity of 200 000 tonnes per annum. A comparison between the calculated and measured results has proved that these results are satisfactory. The bed height and the volume of the catalytic bed are calculated aim at one million t/a DME yields and while taking account of high-purity DME production. After discussing the influence of feed stage location and reflux ratio for DME product purity, the suitable unit operation conditions are chosen. Accordingly, accurate process simulation results provide the basis and guidance for an improvement and development of the similar industrial device.


2014 ◽  
Vol 70 (2) ◽  
pp. 1228-1237 ◽  
Author(s):  
Flavio Manenti ◽  
Andres R. Leon-Garzon ◽  
Zohreh Ravaghi-Ardebili ◽  
Carlo Pirola

Author(s):  
Wen-Zhi Lu ◽  
Li-Hua Teng ◽  
Wen-De Xiao

Dimethyl ether (DME) is regarded as an environmentally benign fuel for vehicles. Two kinds of reactor technologies for DME synthesis have been proposed by previous researchers: the fixed-bed and the slurry reactor. As the reactions are highly exothermic and the temperature window of the catalyst is very narrow, the fixed-bed reactor provides a limited heat removal capability and a low conversion of the syngas. The slurry reactor can provide an effective temperature control but a very high inter-phase mass transfer resistance is added by the liquid medium. The Fluidized bed reactor can be an ideal reactor for DME synthesis as it possesses both high heat and mass transfer efficiencies. In this paper, a two-phase model is used to theoretically analyze the DME synthesis in a fluidized bed reactor, with both phases assumed to be in plug flow and taking into account the changes in bubble diameter resulting from the reaction. Three reactions take place simultaneously when DME is manufactured from the syngas (H2 + CO): a) CO+2H2 = CH3OH; b) 2CH3OH = DME+H2O; and c) CO+H2O = CO2+H2. The simulation shows that, at the reactor outlet, the equilibrium approaches of the three reactions are 0.32, 0.1, and 0.61, respectively. When H2/CO=1.0, the CO conversion and DME selectivity in a fluidized bed reactor are 62% and 95%, while those in a fixed-bed reactor are 9% and 86%. In a slurry reactor, the CO conversion and DME selectivity are 17% and 70%, respectively. Therefore, the fluidized-bed is the most promising candidate reactor for conducting the DME synthesis from syngas. Effects of the operating conditions on the performance of DME synthesis in the fluidized-bed reactor are discussed in details. The optimal H2/CO ratio is between 1.0-1.5, and increasing the pressure is shown to improve the reactor performance.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 999
Author(s):  
Daesung Song ◽  
Sung-Yong Cho ◽  
Toan-Thang Vu ◽  
Hoang-Phi-Yen Duong ◽  
Eunkyu Kim

This work presents the numerical analysis and validation of a fixed bed reactor model for 2,3-butanediol (2,3-BDO) dehydration. The 1D heterogeneous reactor model considering interfacial and intra-particle gradients, was simulated and numerical analysis of the model was conducted to understand the characteristics of the reactions in a catalyst along the reactor length. The model was also validated by comparing predicted performance data with pilot-scale plant data operated at 0.2 bar, 299–343 °C and 0.48–2.02 h−1 of weight hourly space velocity (WHSV). The model showed good agreement with the temperature profile, 2,3-BDO conversion and selectivity of target products. In addition, sensitivity analyses of the model were investigated by changing feed flow rate, feed composition, and inlet temperature. It was found that stable and efficient operation conditions are lower than 0.65 h−1 of WHSV and 330–340 °C of inlet temperature. Additionally, the reactor performance was not affected by 2,3-BDO feed concentration above 70%.


2008 ◽  
Vol 47 (13) ◽  
pp. 4553-4559 ◽  
Author(s):  
Daesung Song ◽  
Wonjun Cho ◽  
Gibaek Lee ◽  
Dal Keun Park ◽  
En Sup Yoon

2006 ◽  
Vol 23 (4) ◽  
pp. 522-530 ◽  
Author(s):  
Shin Beom Lee ◽  
Wonjun Cho ◽  
Dal Keun Park ◽  
En Sup Yoon

2014 ◽  
Vol 931-932 ◽  
pp. 3-6 ◽  
Author(s):  
Watcharakorn Pranee ◽  
Pornsawan Assawasaengrat ◽  
Arthit Neramittagapong ◽  
Sasitorn Intarachit ◽  
Sutasinee Neramittagapong

The synthesis of dimethyl ether via methanol dehydration has been carried out over Beta zeolite (BEA) and ion-exchanged Beta zeolite from bagasse fly ash using hydrothermal method. The reactions were taken place in a fixed-bed reactor. The effects of nickel and zirconium ion-exchanged of BEA were investigated. Ni-BEA zeolite exhibited high methanol conversion rate and DME-resultant upon the reaction temperature from 200 to 225°C with equilibrium-limiting condition over 225°C; Furthermore, the Ni-BEA zeolite presented the best stable activity at 225°C over 1,200 minute. The Ni-BEA zeolite has also been interesting as a zeolite which suited to be one role importance to improve the properties for methanol dehydration to dimethyl ether.


Author(s):  
Haipeng Zhang ◽  
Wei Li ◽  
Wende Xiao

Abstract Direct dimethyl ether (DME) synthesis from syngas has been increasingly attracted attentions. Relationship between the synergistic effect and the deactivation behavior of hybrid catalysts was studied in this paper. Two kinds of catalysts with different synergistic effect were tested in a fixed bed reactor and the catalysts before and after stability testing were characterized by XRD, N2-adsorption and TGA. Results show that the deactivation behavior of the catalyst is mainly caused by the deactivation of the methanol synthesis catalyst. Sintering of Cu particles is the main reason of the catalyst deactivation. In addition, coking during synthesis is another reason for the catalyst deactivation. Both the two reasons are deeply affected by the synergistic effect.


Sign in / Sign up

Export Citation Format

Share Document