Theoretical Analysis of Fluidized-Bed Reactor for Dimethyl Ether Synthesis from Syngas

Author(s):  
Wen-Zhi Lu ◽  
Li-Hua Teng ◽  
Wen-De Xiao

Dimethyl ether (DME) is regarded as an environmentally benign fuel for vehicles. Two kinds of reactor technologies for DME synthesis have been proposed by previous researchers: the fixed-bed and the slurry reactor. As the reactions are highly exothermic and the temperature window of the catalyst is very narrow, the fixed-bed reactor provides a limited heat removal capability and a low conversion of the syngas. The slurry reactor can provide an effective temperature control but a very high inter-phase mass transfer resistance is added by the liquid medium. The Fluidized bed reactor can be an ideal reactor for DME synthesis as it possesses both high heat and mass transfer efficiencies. In this paper, a two-phase model is used to theoretically analyze the DME synthesis in a fluidized bed reactor, with both phases assumed to be in plug flow and taking into account the changes in bubble diameter resulting from the reaction. Three reactions take place simultaneously when DME is manufactured from the syngas (H2 + CO): a) CO+2H2 = CH3OH; b) 2CH3OH = DME+H2O; and c) CO+H2O = CO2+H2. The simulation shows that, at the reactor outlet, the equilibrium approaches of the three reactions are 0.32, 0.1, and 0.61, respectively. When H2/CO=1.0, the CO conversion and DME selectivity in a fluidized bed reactor are 62% and 95%, while those in a fixed-bed reactor are 9% and 86%. In a slurry reactor, the CO conversion and DME selectivity are 17% and 70%, respectively. Therefore, the fluidized-bed is the most promising candidate reactor for conducting the DME synthesis from syngas. Effects of the operating conditions on the performance of DME synthesis in the fluidized-bed reactor are discussed in details. The optimal H2/CO ratio is between 1.0-1.5, and increasing the pressure is shown to improve the reactor performance.

2008 ◽  
Vol 59 (10) ◽  
Author(s):  
A. Violeta Ursu ◽  
Fabrice Gros ◽  
Denisa I. Nistor ◽  
Gholamreza Djelveh

The aim of this paper is to study the use of a mixture of commercial clay namely K10 and a natural Romanian sodium bentonite in the adsorption of NH3 contained in air using fixed and fluidized bed gas-solid reactors. Qualitative (DRX) and quantitative (XPS, DTG) analysis were performed. Clays were agglomerated and treated with NH3. Adsorption isotherms were determined under several operating conditions. Results showed that after 70 minutes of ammonization, activated agglomerated clay exhibits a superior capacity of adsorption (2.09 mmoles NH3/g clay instead of 1.057 mmoles/g clay for natural clay). The saturation duration depends on the adsorbent bed state (fixed or fluidized bed). The mass transfer is better in fluidized bed, the clay layer being saturated more rapidly compared to the fixed bed.


Fuel ◽  
2021 ◽  
Vol 288 ◽  
pp. 119575
Author(s):  
Nassim Bouchoul ◽  
Houcine Touati ◽  
Elodie Fourré ◽  
Jean-Marc Clacens ◽  
Catherine Batiot-Dupeyrat

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1522
Author(s):  
Daesung Song ◽  
Sung Yong Cho ◽  
Thang Toan Vu ◽  
Yen Hoang Phi Duong ◽  
Eunkyu Kim

The one-dimensional (1D) mathematical model of fixed bed reactor was developed for dimethyl ether (DME) synthesis at pilot-scale (capacity: 25–28 Nm3/h of syngas). The reaction rate, heat, and mass transfer equations were correlated with the effectiveness factor. The simulation results, including the temperature profile, CO conversion, DME selectivity, and DME yield of the outlet, were validated with experimental data. The average error ratios were below 9.3%, 8.1%, 7.8%, and 3.5% for the temperature of the reactor, CO conversion, DME selectivity, and DME yield, respectively. The sensitivity analysis of flow rate, feed pressure, H2:CO ratio, and CO2 mole fraction was investigated to demonstrate the applicability of this model.


2013 ◽  
Vol 11 (1) ◽  
pp. 147-158 ◽  
Author(s):  
Reza Vakili ◽  
Reza Eslamloueyan

Abstract Dimethyl ether (DME) is traditionally produced by methanol dehydration in an adiabatic reactor. Recently, a more economical method has been proposed to produce DME in a reactor in which methanol production and dehydration take place simultaneously on a bi-functional catalyst. In the present study, the design and optimization of an industrial scale fixed bed reactor for the direct synthesis of DME from syngas are investigated. A steady state, pseudo-homogeneous model has been applied to simulate the proposed reactor. At first, the preliminary design of the reactor is done based on the reactor design heuristics for industrial reactors. Then, using differential evolution (DE) algorithm as a fast and efficient optimization method, the tentative reactor operating conditions and its internal configuration are optimized. The objective of the optimization is to maximize DME production in each tube of the reactor. The number of tubes, feed inlet and coolant water temperatures are considered as decision variables of the optimization algorithm. At the optimum conditions, the reactor size decreases due to increase of CO conversion and DME productivity in each tube. The results show that the proposed optimum reactor is more economical for large-scale production of DME in comparison to the conventional industrial DME reactor.


2008 ◽  
Vol 47 (13) ◽  
pp. 4553-4559 ◽  
Author(s):  
Daesung Song ◽  
Wonjun Cho ◽  
Gibaek Lee ◽  
Dal Keun Park ◽  
En Sup Yoon

2012 ◽  
Vol 535-537 ◽  
pp. 2139-2142
Author(s):  
Ming Yu Zhang ◽  
Hua Wang ◽  
Wen Gui Gao

A series of CuO-ZnO-CeO2-ZrO2/HZSM-5 catalysts were prepared and characterized by XRD, H2-TPR. CO2hydrogenation to DME was carried out in a fixed bed reactor to test the catalytic performance of Ce-modified CuO-ZnO-ZrO2/HZSM-5 catalyst under the condition of GHSV=1800 h-1, p=3.0 MPa and T=250°C. The results indicate that the added CeO2improved the performance of the bifunctional catalysts, the CO2conversion and DME selectivity were obviously improved. CuO-ZnO-CeO2-ZrO2/HZSM-5 catalyst with Ce to Zr molar ratio of 1/1 showed the highest activity for DME synthesis from CO2hydrogenation.


2019 ◽  
Vol 20 (4) ◽  
pp. 55-60
Author(s):  
Israa Sabah ◽  
Abeer I. Alwared

The purpose of this paper is to examine absorbance for the removal of the Red Congo using wheat husk as a biological pesticide. Several experiments have been conducted with the aim of configuring breakthrough data in a fluidized bed reactor. The minimum fluidized velocities of the bed were found to be 0.031 mm/s for mish sizes of (250) µm diameter with study the mass transfer be calculated KL values. The results showed a well-fitting with the experimental data. Different operating conditions were selected: bed height (2, 5 and 10) cm, flow rate (90, 100and 120) ml/sec and particle diameter (250, 600, 1000) µm. The breakthrough curves were plotted for Congo Red, Values showed that the lower the bed, the lower the number of adsorbents and the potential of the weak bed to condense the density of the solution, which also increases the flow rate and will increase the mass transfer rate.


Sign in / Sign up

Export Citation Format

Share Document