scholarly journals The Influence of the Washcoat Deposition Process on High Pore Density Open Cell Foams Activation for CO Catalytic Combustion

Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 510 ◽  
Author(s):  
Matteo Ambrosetti ◽  
Riccardo Balzarotti ◽  
Cinzia Cristiani ◽  
Gianpiero Groppi ◽  
Enrico Tronconi

Spin coating was evaluated as alternative deposition technique to the commonly used dip coating procedure for washcoat deposition on high-porosity metallic substrates. By using spin coating, the washcoating of metallic open cell foams with very high pore density (i.e., 580 μm in cell diameter) was finely controlled. Catalytic performances of samples prepared with conventional dip coating and spin coating were evaluated in CO catalytic combustion in air, using palladium as active phase and cerium oxide as carrier. The incipient wetness method was used to prepare catalytic powder, which was dispersed by means of an acid-free dispersing medium. After washcoating, deposited layers were evaluated by optical microscopy and adhesion test. In comparison to dip-coated samples, the use of spin coating demonstrated better performances from both catalytic and coating quality points of view, highlighting the possibility of the industrial adoption of these supports for process intensification in several catalytic applications.

2017 ◽  
Vol 326 ◽  
pp. 339-349 ◽  
Author(s):  
Giuliana Ercolino ◽  
Saba Karimi ◽  
Paweł Stelmachowski ◽  
Stefania Specchia

2017 ◽  
Vol 36 (2) ◽  
pp. 107 ◽  
Author(s):  
Tomasz Wejrzanowski ◽  
Samih Haj Ibrahim ◽  
Jakub Skibinski ◽  
Karol Cwieka ◽  
Krzysztof Jan Kurzydlowski

In the present paper two representative models applied for modeling of two types of porous materials - open-cell foams and open-porosity tapes - are addressed. Algorithms presented here base on Laguerre-Voronoi tessellations (open-cell foams) and the sphere representation (open-porosity tapes) and enable creating the desired porosity and pore size distribution. The geometrical features of the models, such as: porosity, mean pore size, cell diameter distribution and number of faces per cell were compared with those obtained by 3D micro-computed tomography and good agreement was obtained.


2018 ◽  
Vol 2 (4) ◽  
pp. 52
Author(s):  
Marie-Line Zanota ◽  
Stéphanie Pallier ◽  
Anaïs Dousse ◽  
Joël Lachambre ◽  
Valérie Meille

Coating open-cell foams by a catalytic layer is a necessary step to obtain structured catalytic foam reactors. The dip-coating method, consisting of immersing the foam in a suspension or in a sol-gel, is generally used to obtain the coating. The excess of liquid has to be evacuated from the foam to obtain a thin layer. Different methods to remove this excess of liquid have been investigated in the present work. The objective was to show that 3D X-ray tomography coupled to image analysis could be a tool to discriminate the methods by analysing the spatial localisation of the catalyst layer throughout the whole foam samples. A simple blowing by air in every direction seems to not be appropriate to obtain uniform coatings.


2021 ◽  
Vol 11 (7) ◽  
pp. 3123
Author(s):  
Haroon Mahmood ◽  
Laura Simonini ◽  
Andrea Dorigato ◽  
Alessandro Pegoretti

In this work, a novel nanomaterial deposition technique involving the triboelectrification (TE) of glass fibers (GF) to create attractive charges on their surface was investigated. Through TE, continuous GF were positively charged thus, attracting negatively charged graphene oxide (GO) nanoparticles dispersed in a solution. The electrical charges on the glass fibers surface increased with the intensity of the TE process. The deposited GO coating was then chemically treated to obtain reduced graphene oxide (rGO) on the surface of GFs. The amount of coating obtained increased with the GO solution concentration used during the deposition process, as revealed by FESEM analysis. However, the same increment could not be noticed as a function of the intensity of the process. Both uncoated and coated GF were used to obtain single fiber microcomposites by using a bicomponent epoxy matrix. The fiber/matrix interfacial shear strength was evaluated through micro debonding tests, which revealed an increment of fiber/matrix adhesion up to 45% for rGO coated GF in comparison to the uncoated ones. A slight improvement in the electrical conductivity of rGO coated fibers through TE compared to conventional dip coating was also observed in terms of volumetric resistivity by a four-point probe setup.


PAMM ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Stephan Kirchhof ◽  
Alfons Ams

2013 ◽  
Vol 15 (12) ◽  
pp. 1292-1298 ◽  
Author(s):  
Johannes Storm ◽  
Martin Abendroth ◽  
Dongshuang Zhang ◽  
Meinhard Kuna

Sign in / Sign up

Export Citation Format

Share Document