scholarly journals Kinetic Study Based on the Carbide Mechanism of a Co-Pt/γ-Al2O3 Fischer–Tropsch Catalyst Tested in a Laboratory-Scale Tubular Reactor

Catalysts ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 717 ◽  
Author(s):  
Marco Marchese ◽  
Niko Heikkinen ◽  
Emanuele Giglio ◽  
Andrea Lanzini ◽  
Juha Lehtonen ◽  
...  

A Co-Pt/γ-Al2O3 catalyst was manufactured and tested for Fischer–Tropsch applications. Catalyst kinetic experiments were performed using a tubular fixed-bed reactor system. The operative conditions were varied between 478 and 503 K, 15 and 30 bar, H2/CO molar ratio 1.06 and 2.11 at a carbon monoxide conversion level of about 10%. Several kinetic models were derived, and a carbide mechanism model was chosen, taking into account an increasing value of termination energy for α-olefins with increasing carbon numbers. In order to assess catalyst suitability for the determination of reaction kinetics and comparability to similar Fischer–Tropsch Synthesis (FTS) applications, the catalyst was characterized with gas sorption analysis, temperature-programmed reduction (TPR), and X-ray diffraction (XRD) techniques. The kinetic model developed is capable of describing the intrinsic behavior of the catalyst correctly. It accounts for the main deviations from the typical Anderson-Schulz-Flory distribution for Fischer–Tropsch products, with calculated activation energies and adsorption enthalpies in line with values available from the literature. The model suitably predicts the formation rates of methane and ethylene, as well as of the other α-olefins. Furthermore, it properly estimates high molecular weight n-paraffin formation up to carbon number C80.

Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1069 ◽  
Author(s):  
Abir Azara ◽  
El-Hadi Benyoussef ◽  
Faroudja Mohellebi ◽  
Mostafa Chamoumi ◽  
François Gitzhofer ◽  
...  

In this study, iron-rich mining residue (UGSO) was used as a support to prepare a new Ni-based catalyst via a solid-state reaction protocol. Ni-UGSO with different Ni weight percentages wt.% (5, 10, and 13) were tested for C2H4 dry reforming (DR) and catalytic cracking (CC) after activation with H2. The reactions were conducted in a differential fixed-bed reactor at 550–750 °C and standard atmospheric pressure, using 0.5 g of catalyst. Pure gases were fed at a molar ratio of C2H4/CO2 = 3 for the DR reaction and C2H4/Ar = 3 for the CC reaction. The flow rate is defined by a GHSV = 4800 mLSTP/h.gcat. The catalyst performance is evaluated by calculating the C2H4 conversion as well as carbon and H2 yields. All fresh, activated, and spent catalysts, as well as deposited carbon, were characterized by Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), transmission electron microscopy (TEM), temperature programmed reduction (TPR), and thermogravimetric analysis (TGA). The results so far show that the highest carbon and H2 yields are obtained with Ni-UGSO 13% at 750 °C for the CC reaction and at 650 °C for the DR reaction. The deposited carbon was found to be filamentous and of various sizes (i.e., diameters and lengths). The analyses of the results show that iron is responsible for the growth of carbon nanofilaments (CNF) and nickel is responsible for the split of C–C bonds. In terms of conversion and yield efficiencies, the performance of the catalytic formulations tested is proven at least equivalent to other Ni-based catalyst performances described by the literature.


Author(s):  
Pavan Kumar Gupta ◽  
Abhishek Mahato ◽  
Goutam Kishore Gupta ◽  
Gajanan Sahu ◽  
Sudip Maity

The present study focuses on the catalytic conversion of syngas (CO + H2) through Fischer–Tropsch (FT) route using two identically prepared 0.1 wt.% palladium promoted Mesoporous Alumina (MA) and SBA–15 supported Co (15 wt.%) catalysts. The Fischer–Tropsch activity is performed in a fixed bed tubular reactor at temperature 220 °C and pressure 30 bar with H2/CO ratio ~2 having Gas Hourly Space Velocity (GHSV) of 500 h−1. Detail characterizations of the catalysts are carried out using different analytical techniques like N2 adsorption-desorption, Temperature-programmed reduction with hydrogen (H2-TPR), Temperature-programmed desorption with NH3 (NH3-TPD), X-Ray Diffraction (XRD), and Transmission Electron Microscopy (TEM). The results show that the SBA–15 supported catalyst exhibits higher C6–C12 selectivity (57.5%), and MA supported catalyst facilitates the formation of higher hydrocarbons (C13–C20) having a selectivity of 46.7%. This study attributes the use of both the support materials for the production of liquid hydrocarbons through FT synthesis.


Author(s):  
Reza Jalilzadeh ◽  
Mahmoud Moqadam

A comprehensive kinetic model of the Fischer-Tropsch synthesis (FTS) is developed in a fixed bed reactor under operating conditions (temperature, 230–235°C, pressure, 20–25 bar, gas hourly space velocity, 4000–5000 cm3(STP)/h/gcatalyst ,H2/CO feed molar ratio, 2.1) over a Co based catalyst. Reaction rate equations based on Eley-Rideal (ER) type model for initiation step and Langmuir-Hinshelwood-Hougen-Watson (LHHW) type model for propagation and termination steps of the FTS reactions have been considered and the readsorption of olefins were taken into account. The model that was reported in the literature was modified in order to explain many significant deviations from the ASF distribution. Optimum parameters have been obtained by Genetic Algorithms (GA). The calculated activation energies to produce n-paraffins and 1-olefins were in the range of 82.24 to 90.68 kJ/mol and 100.66 to 105.24 kJ/mol, respectively. The hydrocarbon distribution in FTS reactions was satisfactorily predicted particularly for paraffins.


Author(s):  
Radwa A. El-Salamony ◽  
Sara A. El-Sharaky ◽  
Seham A. Al-Temtamy ◽  
Ahmed M. Al-Sabagh ◽  
Hamada M. Killa

Abstract Recently, because of the increasing demand for natural gas and the reduction of greenhouse gases, interests have focused on producing synthetic natural gas (SNG), which is suggested as an important future energy carrier. Hydrogenation of CO2, the so-called methanation reaction, is a suitable technique for the fixation of CO2. Nickel supported on yttrium oxide and promoted with cobalt were prepared by the wet-impregnation method respectively and characterized using SBET, XRD, FTIR, XPS, TPR, and HRTEM/EDX. CO2 hydrogenation over the Ni/Y2O3 catalyst was examined and compared with Co–Ni/Y2O3 catalysts, Co% = 10 and 15 wt/wt. The catalytic test was conducted with the use of a fixed-bed reactor under atmospheric pressure. The catalytic performance temperature was 350 °C with a supply of H2:CO2 molar ratio of 4 and a total flow rate of 200 mL/min. The CH4 yield was reached 67%, and CO2 conversion extended 48.5% with CO traces over 10Co–Ni/Y2O3 catalyst. This encourages the direct methanation reaction mechanism. However, the reaction mechanism over Ni/Y2O3 catalyst shows different behaviors rather than that over bi-metal catalysts, whereas the steam reforming of methane reaction was arisen associated with methane consumption besides increase in H2 and CO formation; at the same temperature reaction.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 553
Author(s):  
Mansurbek Urol ugli Abdullaev ◽  
Sungjune Lee ◽  
Tae-Wan Kim ◽  
Chul-Ung Kim

Among the zeolitic catalysts for the ethylene-to-propylene (ETP) reaction, the SSZ-13 zeolite shows the highest catalytic activity based on both its suitable pore architecture and tunable acidity. In this study, in order to improve the propylene selectivity further, the surface of the SSZ-13 zeolite was modified with various amounts of tungsten oxide ranging from 1 wt% to 15 wt% via a simple incipient wetness impregnation method. The prepared catalysts were characterized with several analysis techniques, specifically, powder X-ray diffraction (PXRD), Raman spectroscopy, temperature-programmed reduction of hydrogen (H2-TPR), temperature-programmed desorption of ammonia (NH3-TPD), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and N2 sorption, and their catalytic activities were investigated in a fixed-bed reactor system. The tungsten oxide-modified SSZ-13 catalysts demonstrated significantly improved propylene selectivity and yield compared to the parent H-SSZ-13 catalyst. For the tungsten oxide loading, 10 wt% loading showed the highest propylene yield of 64.9 wt%, which was 6.5 wt% higher than the pristine H-SSZ-13 catalyst. This can be related to not only the milder and decreased strong acid sites but also the diffusion restriction of bulky byproducts, as supported by scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDS) observation.


2011 ◽  
Vol 6 (1) ◽  
Author(s):  
Amir Rahimi ◽  
Sogand Hamidi

In this study, the performance of a fixed–bed tubular reactor for the production of phthalic anhydride is mathematically analyzed. The conversion degree and reactor temperature values are compared with the measured one in a tubular reactor applied in Farabi petrochemical unit in Iran as well as reported data in the literature for a pilot plate. The comparisons are satisfactory. The effects of some operating parameters including reactor length, feed temperature, reactor pressure, and existence of an inert in the catalytic bed are investigated. The optimum value of each parameter is determined on the basis of the corresponding operating conditions.


2012 ◽  
Vol 142 (11) ◽  
pp. 1382-1387 ◽  
Author(s):  
Dragomir B. Bukur ◽  
Zhendong Pan ◽  
Wenping Ma ◽  
Gary Jacobs ◽  
Burtron H. Davis

Author(s):  
Fahim Fayaz ◽  
Ahmad Ziad Sulaiman ◽  
Sharanjit Singh ◽  
Sweeta Akbari

The effect of CO2 partial pressure on ethanol dry reforming was evaluated over 5%Ce-10%Co/Al2O3 catalyst at = PCO2 = 20-50 kPa, PC2H5OH = 20 kPa, reaction temperature of 973 K under atmospheric pressure. The catalyst was prepared by using impregnation method and tested in a fixed-bed reactor. X-ray diffraction measurements studied the formation of Co3O4, spinel CoAl2O4 and CeO2, phases on surface of 5%Ce-10%Co/Al2O3 catalyst. CeO2, CoO and Co3O4 oxides were obtained during temperature–programmed calcination. Ce-promoted 10%Co/Al2O3 catalyst possessed high BET surface area of 137.35 m2 g-1. C2H5OH and CO2 conversions was improved with increasing CO2 partial pressure from 20-50 kPa whilst the optimal selectivity of H2 and CO was achieved at 50 kPa.


Sign in / Sign up

Export Citation Format

Share Document