scholarly journals Postprandial Glycogen Content Is Increased in the Hepatocytes of Human and Rat Cirrhotic Liver

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 976
Author(s):  
Natalia N. Bezborodkina ◽  
Sergey V. Okovityi ◽  
Boris N. Kudryavtsev

Chronic hepatitises of various etiologies are widespread liver diseases in humans. Their final stage, liver cirrhosis (LC), is considered to be one of the main causes of hepatocellular carcinoma (HCC). About 80–90% of all HCC cases develop in LC patients, which suggests that cirrhotic conditions play a crucial role in the process of hepatocarcinogenesis. Carbohydrate metabolism in LC undergoes profound disturbances characterized by altered glycogen metabolism. Unfortunately, data on the glycogen content in LC are few and contradictory. In this study, the material was obtained from liver biopsies of patients with LC of viral and alcohol etiology and from the liver tissue of rats with CCl4-induced LC. The activity of glycogen phosphorylase (GP), glycogen synthase (GS), and glucose-6-phosphatase (G6Pase) was investigated in human and rat liver tissue by biochemical methods. Total glycogen and its labile and stable fractions were measured in isolated individual hepatocytes, using the cytofluorometry technique of PAS reaction in situ. The development of LC in human and rat liver was accompanied by an increase in fibrous tissue (20- and 8.8-fold), an increase in the dry mass of hepatocytes (by 25.6% and 23.7%), and a decrease in the number of hepatocytes (by 50% and 28%), respectively. The rearrangement of the liver parenchyma was combined with changes in glycogen metabolism. The present study showed a significant increase in the glycogen content in the hepatocytes of the human and the rat cirrhotic liver, by 255% and 210%, respectively. An increased glycogen content in cells of the cirrhotic liver can be explained by a decrease in glycogenolysis due to a decreased activity of G6Pase and GP.

1993 ◽  
Vol 265 (5) ◽  
pp. E743-E751
Author(s):  
C. Chen ◽  
P. F. Williams ◽  
I. D. Caterson

Glycogen metabolism in the liver, skeletal muscle, cardiac muscle, and white adipose tissue was studied in gold thioglucose (GTG) obese mice after fasting and during refeeding. Prolonged (48 h) fasted control and GTG mice were refed with standard laboratory diet for 24 h. During fasting and refeeding, the changes in glycogen content and the activity of glycogen synthase I and R and phosphorylase alpha in the liver were similar in lean and GTG mice. However, the glycogen storage in the livers from GTG mice was always greater than that in lean animals. In GTG mice the activity of liver glycogen synthase I and R was significantly higher than that in lean animals 3 and 6 h after refeeding. The activity of liver phosphorylase alpha in GTG mice was higher than that in lean mice after refeeding. There were no significant differences in the glycogen content of white adipose tissue, cardiac muscle, and skeletal muscle from lean and GTG mice during the entire study. The results of this study suggest that increased glycogen storage in the liver is a major alteration in nonoxidative glucose metabolism and contributes to the development of insulin resistance and glucose intolerance in GTG obese mice.


1992 ◽  
Vol 262 (4) ◽  
pp. E434-E439 ◽  
Author(s):  
L. Coderre ◽  
A. K. Srivastava ◽  
J. L. Chiasson

The effect of hypercorticism on the regulation of glycogen metabolism by epinephrine was examined in skeletal muscles using a hindlimb perfusion technique. Rats were injected with either saline or dexamethasone (0.4 mg.kg-1.day-1) for 14 days and were studied in the fed and fasted (24 h) states under saline or epinephrine (10(-7) M) treatment. In the fed state, dexamethasone administration did not affect basal glycogen concentration but decreased glycogen synthase activity ratio in white and red gastrocnemius muscles. Epinephrine failed to decrease glycogen content despite the expected activation of glycogen phosphorylase in the fed dexamethasone-treated rats. Dexamethasone treatment resulted in a threefold increase in the level of muscle adenosine, a phosphorylase a inhibitor. In control rats, fasting was associated with a decrease in muscle glycogen concentration (P less than 0.01) and with an increase in the glycogen synthase activity ratio. Dexamethasone treatment, however, totally abolished both the decreased muscle glycogen content and glycogen synthase activation observed in fasting controls. In the dexamethasone-treated group, fasting restored the glycogenolytic effect of epinephrine. Interestingly, it was associated with decreased muscle adenosine concentrations. These data indicate that, in the fed state, dexamethasone treatment inhibits skeletal muscle glycogenolysis in response to epinephrine despite phosphorylase activation and glycogen synthase inactivation. It is suggested that this abnormality could be due to the inhibition of phosphorylase a by increased muscle adenosine levels.


1992 ◽  
Vol 262 (4) ◽  
pp. E427-E433 ◽  
Author(s):  
L. Coderre ◽  
A. K. Srivastava ◽  
J. L. Chiasson

The effects of hypercorticism on the regulation of glycogen metabolism by insulin in skeletal muscles was examined by using the hindlimb perfusion technique. Rats were injected daily with either saline or dexamethasone (0.4 mg.kg-1.day-1) for 14 days and were studied in the fed or fasted (24 h) state under saline or insulin (1 mU/ml) treatment. In fed controls, insulin resulted in glycogen synthase activation and in enhanced glycogen synthesis. In dexamethasone-treated animals, basal muscle glycogen concentration remained normal, but glycogen synthase activity ratio was decreased in white and red gastrocnemius and plantaris muscles. Furthermore, insulin failed to activate glycogen synthase and glycogen synthesis. In the controls, fasting was associated with decreased glycogen concentrations and with increased glycogen synthase activity ratio in all four groups of muscles (P less than 0.01). Dexamethasone treatment, however, completely abolished the decrease in muscle glycogen content as well as the augmented glycogen synthase activity ratio associated with fasting. Insulin infusion stimulated glycogen synthesis in fasted controls but not in dexamethasone-treated rats. These data therefore indicate that dexamethasone treatment inhibits the stimulatory effect of insulin on glycogen synthase activity and on glycogen synthesis. Furthermore, hypercorticism suppresses the decrease in muscle glycogen content associated with fasting.


2021 ◽  
pp. 1-40
Author(s):  
Xin Zhang ◽  
Luqing Pan ◽  
Ruixue Tong ◽  
Yufen Li ◽  
Lingjun Si ◽  
...  

Abstract To unveil the adaptation of Litopenaeus vannamei to elevated ambient ammonia-N, crustacean hyperglycemic hormone (CHH) was knocked down to investigate its function in glucose metabolism pathway under ammonia-N exposure. When CHH was silenced, haemolymph glucose increased significantly during 3-6 h, decreased significantly during 12-48 h, and recovered to the control groups’ level at 72 h. After CHH knockdown, DA contents reduced significantly during 3-24 h, which recovered after 48 h. Besides, the expressions of GC and DA1R in the hepatopancreas decreased significantly, while DA4R increased significantly. Correspondingly, the contents of cAMP, cGMP and DAG and the expressions of PKA, PKG, AMPKα and AMPKγ were significantly downregulated, while the levels of PKC and AMPKβ were significantly upregulated. The expressions of CREB and GLUT2 decreased significantly, while GLUT1 increased significantly. Moreover, glycogen content, glycogen synthase and glycogen phosphorylase activities in hepatopancreas and muscle were significantly increased. Furthermore, the levels of key enzymes HK, PK and PFK in glycolysis, rate-limiting enzymes CS in TCA, and critical enzymes PEPCK, FBP and G6P in gluconeogenesis were significantly decreased in hepatopancreas. These results suggest that CHH affects DA, and then they affect their receptors respectively to transmit glucose metabolism signals into the hepatopancreas of L. vannamei under ammonia-N stress. CHH acts on cGMP-PKG-AMPKα-CREB pathway through GC, and CHH affects DA to influence cAMP-PKA-AMPKγ-CREB and DAG-PKC-AMPKβ-CREB pathways, thereby regulating GLUTs, inhibiting glycogen metabolism and promoting glycolysis and gluconeogenesis. This study contributes to further understand glucose metabolism mechanism of crustacean in response to environmental stress.


2004 ◽  
Vol 287 (6) ◽  
pp. R1344-R1353 ◽  
Author(s):  
Jason Frolow ◽  
C. Louise Milligan

To test the hypothesis that cortisol and epinephrine have direct regulatory roles in muscle glycogen metabolism and to determine what those roles might be, we developed an in vitro white muscle slice preparation from rainbow trout ( Oncorhynchus mykiss Walbaum). In the absence of hormones, glycogen-depleted muscle slices obtained from exercised trout were capable of significant glycogen synthesis, and the amount of glycogen synthesized was inversely correlated with the initial postexercise glycogen content. When postexercise glycogen levels were <5 μmol/g, about 4.3 μmol/g of glycogen were synthesized, but when postexercise glycogen levels were >5 μmol/g, only about 1.7 μmol/g of glycogen was synthesized. This difference in the amount of glycogen synthesized was reflected in the degree of activation of glycogen synthase. Postexercise glycogen content also influenced the response of the muscle to 10−8 M epinephrine and 10−8 M dexamethasone (a glucocorticoid analog). At high glycogen levels (>5 μmol/g), epinephrine and dexamethasone stimulated glycogen phosphorylase activity and net glycogenolysis, whereas at low (<5 μmol/g) glycogen levels, glycogenesis and activation of glycogen synthase activity prevailed. These data clearly indicate not only is trout muscle capable of in situ glycogenesis, but the amount of glycogen synthesized is a function of initial glycogen content. Furthermore, whereas dexamethasone and epinephrine directly stimulate muscle glycogen metabolism, the net effect is dependent on initial glycogen content.


1979 ◽  
Vol 184 (2) ◽  
pp. 229-232 ◽  
Author(s):  
R D Eichner ◽  
R J Arnold

Bovine adipose-tissue glycogen metabolism was studied during food deprivation and re-feeding. Changes in the specific activity of adipose-tissue glycogen synthase paralleled changes in tissue glycogen content: both parameters increased during food deprivation and remained so during the first 10 days of re-feeding. The values for the A0.5 (activation constant) for glucose 6-phosphate of the freshly isolated enzyme from adipose tissue from fed and starved steers were 2.9 +/- 0.1 mM and 0.90 +/- 0.05 mM respectively. Additionally, whereas incubation of adipose-tissue extracts from fed steers did not activate endogenous glycogen synthase (through a presumed phosphoprotein phosphatase mechanism), the enzyme from starved or re-fed (up to 3 days re-feeding) steers was reversibly activated as measured by changes in the value for the A0.5 for glucose 6-phosphate. Thus activation of bovine adipose-tissue glycogen synthase during food deprivation appears to be related to expression of glycogen synthase phosphatase activity. These effects of food deprivation on bovine glycogen metabolism contrast markedly with the effects observed in rat adipose tissue.


1983 ◽  
Vol 212 (3) ◽  
pp. 679-683 ◽  
Author(s):  
C S Harmon ◽  
P J R Phizackerley

Although the glycogen content of mouse tail skin was decreased during starvation and was restored on re feeding, the proportion of glycogen synthase in the I form remained constant throughout at about 10% of the total. During the phase of net glycogen synthesis 1.5h after access to food was restored, the concentration of UDP glucose was markedly increased and the proportion of phosphorylase in the a form was significantly decreased.


1991 ◽  
Vol 260 (6) ◽  
pp. E927-E932 ◽  
Author(s):  
L. Coderre ◽  
A. K. Srivastava ◽  
J. L. Chiasson

With the use of the hindlimb perfusion technique, the effect of glucocorticoid on the regulation of glycogen metabolism was studied in rat skeletal muscle. Rats were adrenalectomized (ADX) or sham operated (controls) 14 days before the study. The ADX animals were treated with either saline or corticosterone, and the hindlimbs were perfused at rest or during muscle contraction with saline or epinephrine (10(-7) M). In the resting state, the glycogen content was 33.0 +/- 1.9 mumol/g in the controls, and the activity ratios of glycogen phosphorylase (GPase) and glycogen synthase (GSase) were 0.27 +/- 0.03 and 0.15 +/- 0.02, respectively. Epinephrine treatment increased GPase activity (0.78 +/- 0.03) and decreased GSase activity (0.05 +/- 0.01), which resulted in decreased glycogen content (25.7 +/- 0.9 mumol/g; P less than 0.01). Adrenalectomy induced a 35% reduction in glycogen content but had no effect on the activities of basal enzymes. Under these conditions, however, epinephrine had no effect on GPase activity, had a diminished effect on GSase activity (0.11 +/- 0.01), and did not induce further glycogen breakdown. Corticosterone replacement normalized muscle glycogen content in ADX rats as well as the response of the enzymes to epinephrine. Muscle contraction resulted in a decrease in glycogen content (8.9 +/- 1.3 mumol/g) and in GPase activity (0.14 +/- 0.02) and an increase in GSase activity (0.25 +/- 0.01); this was not affected by adrenalectomy nor by epinephrine. In conclusion, these data indicate that glucocorticoid is essential for the effects of epinephrine on GPase activation. on GSase inhibition, and consequently on glycogen breakdown in resting muscle.(ABSTRACT TRUNCATED AT 250 WORDS)


2006 ◽  
Vol 395 (1) ◽  
pp. 137-145 ◽  
Author(s):  
Gretchen E. Parker ◽  
Bartholomew A. Pederson ◽  
Mariko Obayashi ◽  
Jill M. Schroeder ◽  
Robert A. Harris ◽  
...  

Glycogen, a branched polymer of glucose, forms an energy re-serve in numerous organisms. In mammals, the two largest glyco-gen stores are in skeletal muscle and liver, which express tissue-specific glycogen synthase isoforms. MGSKO mice, in which mGys1 (mouse glycogen synthase) is disrupted, are devoid of muscle glycogen [Pederson, Chen, Schroeder, Shou, DePaoli-Roach and Roach (2004) Mol. Cell. Biol. 24, 7179–7187]. The GSL30 mouse line hyper-accumulates glycogen in muscle [Manchester, Skurat, Roach, Hauschka and Lawrence (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 10707–10711]. We performed a microarray analysis of mRNA from the anterior tibialis, medial gastrocnemius and liver of MGSKO mice, and from the gastroc-nemius of GSL30 mice. In MGSKO mice, transcripts of 79 genes varied in their expression in the same direction in both the anterior tibialis and gastrocnemius. These included several genes encoding proteins proximally involved in glycogen metabolism. The Ppp1r1a [protein phosphatase 1 regulatory (inhibitor) sub-unit 1A] gene underwent the greatest amount of downregulation. In muscle, the downregulation of Pfkfb1 and Pfkfb3, encoding isoforms of 6-phosphofructo-2-kinase/fructose-2,6-bisphospha-tase, is consistent with decreased glycolysis. Pathways for branched-chain amino acid, and ketone body utilization appear to be downregulated, as is the capacity to form the gluconeogenic precursors alanine, lactate and glutamine. Expression changes among several members of the Wnt signalling pathway were identified, suggesting an as yet unexplained role in glycogen meta-bolism. In liver, the upregulation of Pfkfb1 and Pfkfb3 expression is consistent with increased glycolysis, perhaps as an adaptation to altered muscle metabolism. By comparing changes in muscle expression between MGSKO and GSL30 mice, we found a subset of 44 genes, the expression of which varied as a function of muscle glycogen content. These genes are candidates for regulation by glycogen levels. Particularly interesting is the observation that 11 of these genes encode cardiac or slow-twitch isoforms of muscle contractile proteins, and are upregulated in muscle that has a greater oxidative capacity in MGSKO mice.


Sign in / Sign up

Export Citation Format

Share Document