scholarly journals Transthyretin: From Structural Stability to Osteoarticular and Cardiovascular Diseases

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1768
Author(s):  
Elżbieta Wieczorek ◽  
Andrzej Ożyhar

Transthyretin (TTR) is a tetrameric protein transporting hormones in the plasma and brain, which has many other activities that have not been fully acknowledged. TTR is a positive indicator of nutrition status and is negatively correlated with inflammation. TTR is a neuroprotective and oxidative-stress-suppressing factor. The TTR structure is destabilized by mutations, oxidative modifications, aging, proteolysis, and metal cations, including Ca2+. Destabilized TTR molecules form amyloid deposits, resulting in senile and familial amyloidopathies. This review links structural stability of TTR with the environmental factors, particularly oxidative stress and Ca2+, and the processes involved in the pathogenesis of TTR-related diseases. The roles of TTR in biomineralization, calcification, and osteoarticular and cardiovascular diseases are broadly discussed. The association of TTR-related diseases and vascular and ligament tissue calcification with TTR levels and TTR structure is presented. It is indicated that unaggregated TTR and TTR amyloid are bound by vicious cycles, and that TTR may have an as yet undetermined role(s) at the crossroads of calcification, blood coagulation, and immune response.

2017 ◽  
Vol 63 ◽  
pp. 237-244 ◽  
Author(s):  
Jia Xie ◽  
Chunfeng Zhao ◽  
Qian Han ◽  
Hailong Zhou ◽  
Qingxiao Li ◽  
...  

2015 ◽  
Vol 129 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Andreia Z. Chignalia ◽  
Maria Aparecida Oliveira ◽  
Victor Debbas ◽  
Randal O. Dull ◽  
Francisco R.M. Laurindo ◽  
...  

Testosterone triggers leucocyte migration and oxidative stress, important features in inflammation and in the development of cardiovascular diseases. The mechanisms by which testosterone increase cardiovascular risk are unknown. We describe one pathway whereby testosterone can potentially contribute to vascular disease.


Author(s):  
Yu Mei ◽  
Melissa D. Thompson ◽  
Richard A. Cohen ◽  
XiaoYong Tong

Author(s):  
A. A. Akopyan ◽  
I. D. Strazhesko ◽  
O. N. Tkacheva ◽  
A. P. Yesakova ◽  
I. A. Orlova

In this research we examined studies of gene polymorphisms, associated with cardiovascular diseases through renin-angiotensin-aldosterone system activation (AGT с.521С>Т, AСE Ins>Del), nitric oxide decline (NOS3 с.894G>T), chronic inflammation (TNF -238G>A, MMP9 -1562С>T) and oxidative stress (CYBA c.214Т>С).


2020 ◽  
Vol 13 (5) ◽  
pp. 923-930
Author(s):  
Nani Nasreldin ◽  
Rania Samir Zaki

Background and Aim: Fasciola hepatica and Fasciola gigantica are two commonly reported liver flukes that cause fascioliasis in ruminants. Among the members of the genus Fasciola, F. hepatica was identified in the study area. Fascioliasis is a major disease that affects the production of livestock by causing liver damage. F. hepatica has developed advanced mechanisms to trick, elude, and alter the host immune response, similar to an extrinsic stressor. These mechanisms consequently affect the animals' physiological and metabolic functions in vivo and postmortem changes, which have significant influences on animal welfare and meat quality development. Therefore, this study aimed to determine the current prevalence of cattle fascioliasis at abattoirs in El-Kharga city, New Valley Governorate, Egypt, and to investigate the changes in serum biochemical and immunological parameters and oxidative stress factors due to Fasciola spp. infection in terms of meat quality and immune response. Materials and Methods: A total of 226 cattle were inspected for the presence of Fasciola spp. The liver of each cattle was examined by making several incisions for detecting adult Fasciola spp. in El- Kharga . The blood samples were collected to analyze the changes in serum biochemical and immunological parameters and oxidative stress factors. Results: Of the 226 cattle, 38 (16.81%) were positive for F. hepatica at the postmortem examination. Cattle infected with F. hepatica had highly elevated serum alanine aminotransferase, aspartate aminotransferase, glutamate dehydrogenase, γ-glutamyl transferase, urea, and creatinine levels. Immunological cytokine profiles showed significantly increased serum interleukin (IL)-4, IL-10, and transforming growth factor-beta levels and a significantly decreased interferon-γ level. Furthermore, oxidative stress profiles showed significantly increased serum malondialdehyde and nitric oxide levels and significantly decreased total antioxidant capacity and reduced glutathione level. Conclusion: This study demonstrated that F. hepatica infection alone is an oxidative stress factor that affects slaughtered animals, leading to biochemical and metabolic alterations in the early postmortem period.


2021 ◽  
pp. 109-128
Author(s):  
Pradip Kumar Jaiswara ◽  
Pratishtha Sonker ◽  
Ajay Kumar

2013 ◽  
Vol 140 (3) ◽  
pp. 239-257 ◽  
Author(s):  
Luc Rochette ◽  
Julie Lorin ◽  
Marianne Zeller ◽  
Jean-Claude Guilland ◽  
Luc Lorgis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document