scholarly journals Accumulation of Genetic and Epigenetic Alterations in the Background Liver and Emergence of Hepatocellular Carcinoma in Patients with Non-Alcoholic Fatty Liver Disease

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3257
Author(s):  
Satoru Hagiwara ◽  
Naoshi Nishida ◽  
Kazuomi Ueshima ◽  
Yasunori Minami ◽  
Yoriaki Komeda ◽  
...  

The incidence of hepatocellular carcinoma (HCC) related to non-alcoholic fatty liver disease (NAFLD) is increasing worldwide. We analyzed 16 surgically resected HCC cases in which the background liver was pathologically diagnosed as NAFLD. Specimens with Brunt classification grade 3 or higher were assigned as the fibrotic progression group (n = 8), and those with grade 1 or lower were classified as the non-fibrosis progression group (n = 8). Comprehensive mutational and methylome analysis was performed in cancerous and noncancerous tissues. The target gene mutation analysis with deep sequencing revealed that CTNNB1 and TP53 mutation was observed in 37.5% and TERT promoter mutation was detected in 50% of cancerous samples. Furthermore, somatic mutations in non-cancerous samples were less frequent, but were observed regardless of the progression of fibrosis. Similarly, on cluster analysis of methylome data, status for methylation events involving non-cancerous liver was similar regardless of the progression of fibrosis. It was found that, even in cases of non-progressive fibrosis, accumulation of gene mutations and abnormal methylation within non-cancerous areas were observed. Patients with NAFLD require a rigorous liver cancer surveillance due to the high risk of HCC emergence based on the accumulation of genetic and epigenetic abnormalities, even when fibrosis is not advanced.

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 790
Author(s):  
Monica Lupsor-Platon ◽  
Teodora Serban ◽  
Alexandra Iulia Silion ◽  
George Razvan Tirpe ◽  
Alexandru Tirpe ◽  
...  

Global statistics show an increasing percentage of patients that develop non-alcoholic fatty liver disease (NAFLD) and NAFLD-related hepatocellular carcinoma (HCC), even in the absence of cirrhosis. In the present review, we analyzed the diagnostic performance of ultrasonography (US) in the non-invasive evaluation of NAFLD and NAFLD-related HCC, as well as possibilities of optimizing US diagnosis with the help of artificial intelligence (AI) assistance. To date, US is the first-line examination recommended in the screening of patients with clinical suspicion of NAFLD, as it is readily available and leads to a better disease-specific surveillance. However, the conventional US presents limitations that significantly hamper its applicability in quantifying NAFLD and accurately characterizing a given focal liver lesion (FLL). Ultrasound contrast agents (UCAs) are an essential add-on to the conventional B-mode US and to the Doppler US that further empower this method, allowing the evaluation of the enhancement properties and the vascular architecture of FLLs, in comparison to the background parenchyma. The current paper also explores the new universe of AI and the various implications of deep learning algorithms in the evaluation of NAFLD and NAFLD-related HCC through US methods, concluding that it could potentially be a game changer for patient care.


Metabolites ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 54
Author(s):  
Benjamin Buchard ◽  
Camille Teilhet ◽  
Natali Abeywickrama Samarakoon ◽  
Sylvie Massoulier ◽  
Juliette Joubert-Zakeyh ◽  
...  

Non-Alcoholic Fatty Liver Disease (NAFLD) is considered as the forthcoming predominant cause for hepatocellular carcinoma (HCC). NAFLD-HCC may rise in non-cirrhotic livers in 40 to 50% of patients. The aim of this study was to identify different metabolic pathways of HCC according to fibrosis level (F0F1 vs. F3F4). A non-targeted metabolomics strategy was applied. We analyzed 52 pairs of human HCC and adjacent non-tumoral tissues which included 26 HCC developed in severe fibrosis or cirrhosis (F3F4) and 26 in no or mild fibrosis (F0F1). Tissue extracts were analyzed using 1H-Nuclear Magnetic Resonance spectroscopy. An optimization evolutionary method based on genetic algorithm was used to identify discriminant metabolites. We identified 34 metabolites differentiating the two groups of NAFLD-HCC according to fibrosis level, allowing us to propose two metabolomics phenotypes of NAFLD-HCC. We showed that HCC-F0F1 mainly overexpressed choline derivatives and glutamine, whereas HCC-F3F4 were characterized by a decreased content of monounsaturated fatty acids (FA), an increase of saturated FA and an accumulation of branched amino acids. Comparing HCC-F0F1 and HCC-F3F4, differential expression levels of glucose, choline derivatives and phosphoethanolamine, monounsaturated FA, triacylglycerides were identified as specific signatures. Our metabolomics analysis of HCC tissues revealed for the first time two phenotypes of HCC developed in NAFLD according to fibrosis level. This study highlighted the impact of the underlying liver disease on metabolic reprogramming of the tumor.


Sign in / Sign up

Export Citation Format

Share Document