scholarly journals Human and Mouse TRPA1 Are Heat and Cold Sensors Differentially Tuned by Voltage

Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 57 ◽  
Author(s):  
Viktor Sinica ◽  
Lucie Zimova ◽  
Kristyna Barvikova ◽  
Lucie Macikova ◽  
Ivan Barvik ◽  
...  

Transient receptor potential ankyrin 1 channel (TRPA1) serves as a key sensor for reactive electrophilic compounds across all species. Its sensitivity to temperature, however, differs among species, a variability that has been attributed to an evolutionary divergence. Mouse TRPA1 was implicated in noxious cold detection but was later also identified as one of the prime noxious heat sensors. Moreover, human TRPA1, originally considered to be temperature-insensitive, turned out to act as an intrinsic bidirectional thermosensor that is capable of sensing both cold and heat. Using electrophysiology and modeling, we compare the properties of human and mouse TRPA1, and we demonstrate that both orthologues are activated by heat, and their kinetically distinct components of voltage-dependent gating are differentially modulated by heat and cold. Furthermore, we show that both orthologues can be strongly activated by cold after the concurrent application of voltage and heat. We propose an allosteric mechanism that could account for the variability in TRPA1 temperature responsiveness.

2005 ◽  
Vol 1 ◽  
pp. 1744-8069-1-16 ◽  
Author(s):  
David D McKemy

Recognition of temperature is a critical element of sensory perception and allows us to evaluate both our external and internal environments. In vertebrates, the somatosensory system can discriminate discrete changes in ambient temperature, which activate nerve endings of primary afferent fibers. These thermosensitive nerves can be further segregated into those that detect either innocuous or noxious (painful) temperatures; the latter neurons being nociceptors. We now know that thermosensitive afferents express ion channels of the transient receptor potential (TRP) family that respond at distinct temperature thresholds, thus establishing the molecular basis for thermosensation. Much is known of those channels mediating the perception of noxious heat; however, those proposed to be involved in cool to noxious cold sensation, TRPM8 and TRPA1, have only recently been described. The former channel is a receptor for menthol, and links the sensations provided by this and other cooling compounds to temperature perception. While TRPM8 almost certainly performs a critical role in cold signaling, its part in nociception is still at issue. The latter channel, TRPA1, is activated by the pungent ingredients in mustard and cinnamon, but has also been postulated to mediate our perception of noxious cold temperatures. However, a number of conflicting reports have suggested that the role of this channel in cold sensation needs to be confirmed. Thus, the molecular logic for the perception of cold-evoked pain remains enigmatic. This review is intended to summarize our current understanding of these cold thermoreceptors, as well as address the current controversy regarding TRPA1 and cold signaling.


2009 ◽  
Vol 101 (3) ◽  
pp. 1151-1159 ◽  
Author(s):  
A. Pezier ◽  
Y. V. Bobkov ◽  
B. W. Ache

The mechanism(s) of olfactory transduction in invertebrates remains to be fully understood. In lobster olfactory receptor neurons (ORNs), a nonselective sodium-gated cation (SGC) channel, a presumptive transient receptor potential (TRP)C channel homolog, plays a crucial role in olfactory transduction, at least in part by amplifying the primary transduction current. To better determine the functional role of the channel, it is important to selectively block the channel independently of other elements of the transduction cascade, causing us to search for specific pharmacological blockers of the SGC channel. Given evidence that the Na+/Ca2+ exchange inhibitor, KB-R7943, blocks mammalian TRPC channels, we studied this probe as a potential blocker of the lobster SGC channel. KB-R7943 reversibly blocked the SGC current in both inside- and outside-out patch recordings in a dose- and voltage-dependent manner. KB-R7943 decreased the channel open probability without changing single channel amplitude. KB-R7943 also reversibly and in a dose-dependent manner inhibited both the odorant-evoked discharge of lobster ORNs and the odorant-evoked whole cell current. Our findings strongly imply that KB-R7943 potently blocks the lobster SGC channel and likely does so directly and not through its ability to block the Na+/Ca2+ exchanger.


Life ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 233
Author(s):  
Aude Lafoux ◽  
Sabine Lotteau ◽  
Corinne Huchet ◽  
Sylvie Ducreux

The transient receptor potential vanilloid 1 (TRPV1) belongs to the transient receptor potential superfamily of sensory receptors. TRPV1 is a non-selective cation channel permeable to Ca2+ that is capable of detecting noxious heat temperature and acidosis. In skeletal muscles, TRPV1 operates as a reticular Ca2+-leak channel and several TRPV1 mutations have been associated with two muscle disorders: malignant hyperthermia (MH) and exertional heat stroke (EHS). Although TRPV1−/− mice have been available since the 2000s, TRPV1’s role in muscle physiology has not been thoroughly studied. Therefore, the focus of this work was to characterize the contractile phenotype of skeletal muscles of TRPV1-deficient mice at rest and after four weeks of exercise. As MS and EHS have a higher incidence in men than in women, we also investigated sex-related phenotype differences. Our results indicated that, without exercise, TRPV1−/− mice improved in vivo muscle strength with an impairment of skeletal muscle in vitro twitch features, i.e., delayed contraction and relaxation. Additionally, exercise appeared detrimental to TRPV1−/− slow-twitch muscles, especially in female animals.


Science ◽  
2017 ◽  
Vol 359 (6372) ◽  
pp. 228-232 ◽  
Author(s):  
Henriette E. Autzen ◽  
Alexander G. Myasnikov ◽  
Melody G. Campbell ◽  
Daniel Asarnow ◽  
David Julius ◽  
...  

Transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed cation channel associated with a variety of cardiovascular disorders. TRPM4 is activated by increased intracellular calcium in a voltage-dependent manner but, unlike many other TRP channels, is permeable to monovalent cations only. Here we present two structures of full-length human TRPM4 embedded in lipid nanodiscs at ~3-angstrom resolution, as determined by single-particle cryo–electron microscopy. These structures, with and without calcium bound, reveal a general architecture for this major subfamily of TRP channels and a well-defined calcium-binding site within the intracellular side of the S1-S4 domain. The structures correspond to two distinct closed states. Calcium binding induces conformational changes that likely prime the channel for voltage-dependent opening.


Endocrinology ◽  
2010 ◽  
Vol 151 (1) ◽  
pp. 406-416 ◽  
Author(s):  
Daesuk Chung ◽  
Yoon-Sun Kim ◽  
Jennifer N. Phillips ◽  
Aida Ulloa ◽  
Chun-Ying Ku ◽  
...  

Abstract An increase in intracellular Ca2+ ([Ca2+]i) as a result of release of Ca2+ from intracellular stores or influx of extracellular Ca2+ contributes to the regulation of smooth muscle contractile activity. Human uterine smooth muscle cells exhibit receptor-, store-, and diacylglycerol (OAG)-mediated extracellular Ca2+-dependent increases in [Ca2+]i (SRCE) and express canonical transient receptor potential-like channels (TRPC) mRNAs (predominantly TRPC1, -4, and -6) that have been implicated in SRCE. To determine the role of TRPC6 in human myometrial SRCE, short hairpin RNA constructs were designed that effectively targeted a TRPC6 mRNA reporter for degradation. One sequence was used to produce an adenovirus construct (TC6sh1). TC6sh1 reduced TRPC6 mRNA but not TRPC1, -3, -4, -5, or -7 mRNAs in PHM1-41 myometrial cells. Compared with uninfected cells or cells infected with empty vector, the increase in [Ca2+]i in response to OAG was specifically inhibited by TC6sh1, whereas SRCE responses elicited by either oxytocin or thapsigargin were not changed. Similar findings were observed in primary pregnant human myometrial cells. When PHM1-41 cells were activated by OAG in the absence of extracellular Na+, the increase in [Ca2+]i was partially reduced. Furthermore, pretreatment with nifedipine, an L-type calcium channel blocker, also partially reduced the OAG-induced [Ca2+]i increase. Similar effects were observed in primary human myometrial cells. These findings suggest that OAG activates channels containing TRPC6 in myometrial cells and that these channels act via both enhanced Na+ entry coupled to activation of voltage-dependent Ca2+ entry channels and a nifedipine-independent Ca2+ entry mechanism to promote elevation of intracellular Ca2+.


2022 ◽  
Vol 14 ◽  
Author(s):  
Mahar Fatima ◽  
Hannah Slade ◽  
Lorraine Horwitz ◽  
Angela Shi ◽  
Jingyi Liu ◽  
...  

Thermosensitive transient receptor potential V3 (TRPV3) is a polymodal receptor implicated in nociceptive, thermoceptive, pruritoceptive, and inflammatory pathways. Reports focused on understanding the role of TRPV3 in thermoception or nociception are not conclusive. Previous studies also show that aberrant hyperactivity of TRPV3 channels results in spontaneous itch and dermatitis-like symptoms, but the resultant behavior is highly dependent on the background of the animal and the skin microbiome. To determine the function of hyperactive TRPV3 channels in somatosensory sensations, we tested different somatosensory behaviors using a genetic mouse model that carries a gain-of-function point mutation G573S in the Trpv3 gene (Trpv3G573S). Here we report that Trpv3G573S mutants show reduced perception of cold, acetone-induced cooling, punctate, and sharp mechanical pain. By contrast, locomotion, noxious heat, touch, and mechanical itch are unaffected in Trpv3G573S mice. We fail to observe any spontaneous itch responses and/or dermatitis in Trpv3G573S mutants under specific pathogen (Staphylococcus aureus)-free conditions. However, we find that the scratching events in response to various pruritogens are dramatically decreased in Trpv3G573S mice in comparison to wild-type littermates. Interestingly, we observe sensory hypoinnervation of the epidermis in Trpv3G573S mutants, which might contribute to the deficits in acute mechanical pain, cool, cold, and itch sensations.


2021 ◽  
Author(s):  
Francesco De Logu ◽  
Romina Nassini ◽  
Alan Hegron ◽  
Lorenzo Landini ◽  
Dane Jensen ◽  
...  

Abstract Efficacy of monoclonal antibodies against calcitonin gene-related peptide (CGRP) or its receptor (calcitonin receptor-like receptor/receptor activity modifying protein-1, CLR/RAMP1) implicates peripherally-released CGRP in migraine pain. However, the site and mechanism of CGRP-evoked migraine pain remain unknown. By cell-selective RAMP1 gene deletion, we reveal that CGRP released from mouse cutaneous trigeminal fibers targets CLR/RAMP1 on surrounding Schwann cells to evoke periorbital mechanical allodynia. CLR/RAMP1 activation in human and mouse Schwann cells generates long-lasting signals from endosomes that evoke cAMP-dependent formation of NO. NO, by gating Schwann cell transient receptor potential ankyrin 1 (TRPA1), releases ROS, which in a feed-forward manner sustain allodynia via nociceptor TRPA1. When encapsulated into nanoparticles that release cargo in acidified endosomes, a CLR/RAMP1 antagonist provides superior inhibition of CGRP signaling and allodynia in mice. The CGRP-mediated neuronal/Schwann cell pathway is critical to mediate allodynia associated with neurogenic inflammation, thus contributing to the pro-migraine action of CGRP.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Xiaoqian Gao ◽  
Sheryl Koch ◽  
Min Jiang ◽  
Nathan Robbins ◽  
Wenfeng Cai ◽  
...  

TRPV2 is a member of transient receptor potential vanilloid (TRPV) family. As a Ca 2+ channel, it can detect various stimuli such as noxious heat (>52°C), membrane stretching, as well as a number of exogenous chemicals, including probenecid, 2-aminoethoxydiphenyl borate, and lysophospholipids. TRPV2 has been found in many tissue types, including neuron and kidney, but the function of TRPV2 in the heart is poorly understood. Here we show TRPV2 is involved in the Ca 2+ cycling process and then regulates the function of the cardiomyocyte. We identified the mRNA expression of TRPV2 in the cardiac tissues of mice using real-time PCR. By performing echocardiography we found that administration of probenecid, a selective TRPV2 agonist, increased cardiac ejection fraction in mice. This positive inotropic effect of probenecid was also shown in Langendorff perfused mice hearts as increased peak +dP/dt. In isolated ventricular myocytes, we found that probenecid significantly increased myocyte fractional shortening in a dose-dependent manner, which was fully blocked by ruthenium red, a non-selective TRPV2 blocker. We also performed fluorescent studies to examine myocyte Ca 2+ cycling. We found that probenecid significantly increased Ca 2+ transient and resting-state Ca 2+ sparks and this effect was eliminated by ruthenium red. When Ca 2+ storage in sarcoplasmic reticulum (SR) was depleted with caffeine, and SR Ca 2+ reuptake was blocked by thapsigargin at the same time, probenecid did not show any effects in either Ca 2+ transient or Ca 2+ sparks. Our patch clamp experiments indicate that probenecid treatment does not trigger any significant transmembrane Ca 2+ influx. These results point to the important role of TRPV2 in regulating SR Ca 2+ release. In conclusion, TRPV2 activation may contribute to increased SR Ca 2+ release, leading to the enhancement of myocyte contractility. Thus, TRPV2 plays a potentially important role in controlling the cellular function of heart.


2005 ◽  
Vol 126 (5) ◽  
pp. 439-451 ◽  
Author(s):  
Jason Lee ◽  
Seung-Kuy Cha ◽  
Tie-Jun Sun ◽  
Chou-Long Huang

The transient receptor potential type V5 channel (TRPV5) is a Ca2+-selective TRP channel important for epithelial Ca2+ transport. Intracellular Mg2+ causes a fast voltage-dependent block of the TRPV5 channel by binding to the selectivity filter. Here, we report that intracellular Mg2+ binding to the selectivity filter of TRPV5 also causes a slower reversible conformational change leading to channel closure. We further report that PIP2 activates TRPV5. Activation of TRPV5 by PIP2 is independent of Mg2+. Yet, PIP2 decreases sensitivity of the channel to the Mg2+-induced slow inhibition. Mutation of aspartate-542, a critical Mg2+-binding site in the selectivity filter, abolishes Mg2+-induced slow inhibition. PIP2 has no effects on Mg2+-induced voltage-dependent block. Thus, PIP2 prevents the Mg2+-induced conformational change without affecting Mg2+ binding to the selectivity filter. Hydrolysis of PIP2 via receptor activation of phospholipase C sensitizes TRPV5 to the Mg2+-induced slow inhibition. These results provide a novel mechanism for regulation of TRP channels by phospholipase C–activating hormones via alteration of the sensitivity to intracellular Mg2+.


2020 ◽  
Vol 11 ◽  
Author(s):  
Michael J. M. Fischer ◽  
Cosmin I. Ciotu ◽  
Arpad Szallasi

A fundamental subdivision of nociceptive sensory neurons is named after their unique sensitivity to capsaicin, the pungent ingredient in hot chili peppers: these are the capsaicin-sensitive afferents. The initial excitation by capsaicin of these neurons manifested as burning pain sensation is followed by a lasting refractory state, traditionally referred to as “capsaicin desensitization,” during which the previously excited neurons are unresponsive not only to capsaicin but a variety of unrelated stimuli including noxious heat. The long sought-after capsaicin receptor, now known as TRPV1 (transient receptor potential cation channel, subfamily V member 1), was cloned more than two decades ago. The substantial reduction of the inflammatory phenotype of Trpv1 knockout mice has spurred extensive efforts in the pharmaceutical industry to develop small molecule TRPV1 antagonists. However, adverse effects, most importantly hyperthermia and burn injuries, have so far prevented any compounds from progressing beyond Phase 2. There is increasing evidence that these limitations can be at least partially overcome by approaches outside of the mainstream pharmaceutical development, providing novel therapeutic options through TRPV1. Although ablation of the whole TRPV1-expressing nerve population by high dose capsaicin, or more selectively by intersectional genetics, has allowed researchers to investigate the functions of capsaicin-sensitive afferents in health and disease, several “mysteries” remain unsolved to date, including the molecular underpinnings of “capsaicin desensitization,” and the exact role these nerves play in thermoregulation and heat sensation. This review tries to shed some light on these capsaicin mechanisms.


Sign in / Sign up

Export Citation Format

Share Document