scholarly journals The Co-Chaperone HspBP1 Is a Novel Component of Stress Granules that Regulates Their Formation

Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 825
Author(s):  
Hicham Mahboubi ◽  
Ossama Moujaber ◽  
Mohamed Kodiha ◽  
Ursula Stochaj

The co-chaperone HspBP1 interacts with members of the hsp70 family, but also provides chaperone-independent functions. We report here novel biological properties of HspBP1 that are relevant to the formation of cytoplasmic stress granules (SGs). SG assembly is a conserved reaction to environmental or pathological insults and part of the cellular stress response. Our study reveals that HspBP1 (1) is an integral SG constituent, and (2) a regulator of SG assembly. Oxidative stress relocates HspBP1 to SGs, where it co-localizes with granule marker proteins and polyA-RNA. Mass spectrometry and co-immunoprecipitation identified novel HspBP1-binding partners that are critical for SG biology. Specifically, HspBP1 associates with the SG proteins G3BP1, HuR and TIA-1/TIAR. HspBP1 also interacts with polyA-RNA in vivo and binds directly RNA homopolymers in vitro. Multiple lines of evidence and single-granule analyses demonstrate that HspBP1 is crucial for SG biogenesis. Thus, HspBP1 knockdown interferes with stress-induced SG assembly. By contrast, HspBP1 overexpression promotes SG formation in the absence of stress. Notably, the hsp70-binding domains of HspBP1 regulate SG production in unstressed cells. Taken together, we identified novel HspBP1 activities that control SG formation. These features expand HspBP1’s role in the cellular stress response and provide new mechanistic insights into SG biogenesis.

2009 ◽  
Vol 21 (9) ◽  
pp. 44
Author(s):  
P. Y. Chin ◽  
A. M. Macpherson ◽  
J. G. Thompson ◽  
M. Lane ◽  
S. A. Robertson

In vitro culture has been shown to be detrimental for pre-implantation embryo development and this has been associated with culture stress and elevated expression of apoptotic genes. Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been shown to promote development and survival of both human and mouse pre-implantation embryos. To investigate the mechanism of action of GM-CSF in mouse embryos, gene expression was examined in in vitro cultured blastocysts with and without recombinant mouse GM-CSF (rmGM-CSF) and in vivo blastocysts flushed from Csf2 null mutant and wild-type mice. Microarray analysis of the effect of GM-CSF on transcription profile implicated apoptosis and stress response gene pathways in blastocyst responses to rmGM-CSF in vitro. Groups of 30 blastocysts were collected from in vitro cultured and in vivo developed blastocyst were analysed using quantitative real-time polymerase chain reaction (qRT-PCR). qRT-PCR analysis of in vitro blastocysts revealed that addition of rmGM-CSF causes differential expression of several genes associated with apoptosis and cellular stress pathway, including Cbl, Hspa5, Hsp90aa1, Hsp90ab1 and Gas5. Immunocytochemical analysis of common proteins of the apoptosis and cellular stress response pathways BAX, BCL2, TRP53 (p53) and HSPA1A/1B (Hsp70) in in vitro blastocysts revealed that HSPA1A/1B and BCL2 proteins were less abundant in embryos cultured in rmGM-CSF, but BAX and TRP53 were unchanged. In in vivo developed blastocysts, Csf2 null mutation resulted in elevated levels of only the heat shock protein Hsph1, suggesting that in vivo, other cytokines can compensate for GM-CSF deficiency as the absence of GM-CSF has a lesser effect on the stress response pathway. We conclude that GM-CSF is a regulator of the apoptosis and cellular stress response pathways influencing mouse pre-implantation embryo development to facilitate embryo growth and survival, and the effects of GM-CSF are particularly evident in in vitro culture media in the absence of other cytokines.


2003 ◽  
Vol 23 (10) ◽  
pp. 3477-3486 ◽  
Author(s):  
Wesley J. Hung ◽  
Rachel S. Roberson ◽  
Jaime Taft ◽  
Daniel Y. Wu

ABSTRACT The cellular stress response protein GADD34 mediates growth arrest and apoptosis in response to DNA damage, negative growth signals, and protein malfolding. GADD34 binds to protein phosphatase PP1 and can attenuate the translational elongation of key transcriptional factors through dephosphorylation of eukaryotic initiation factor 2α (eIF2α). Recently, we reported the involvement of human SNF5/INI1 (hSNF5/INI1) protein in the functions of GADD34 and showed that hSNF5/INI1 binds GADD34 and stimulates the bound PP1 phosphatase activity. To better understand the regulatory and functional mechanisms of GADD34, we undertook a yeast two-hybrid screen with full-length GADD34 as bait in order to identify additional protein partners of GADD34. We report here that human cochaperone protein BAG-1 interacts with GADD34 in vitro and in SW480 cells treated with the proteasome inhibitor z-LLL-B to induce apoptosis. Two other proteins, Hsp70/Hsc70 and PP1, associate reversibly with the GADD34-BAG-1 complex, and their dissociation is promoted by ATP. BAG-1 negatively modulates GADD34-bound PP1 activity, and the expression of BAG-1 isoforms can also mask GADD34-mediated inhibition of colony formation and suppression of transcription. Our findings suggest that BAG-1 may function to suppress the GADD34-mediated cellular stress response and support a role for BAG-1 in the survival of cells undergoing stress.


2017 ◽  
Vol 42 (7) ◽  
pp. 708-715 ◽  
Author(s):  
Evan Pollock-Tahiri ◽  
Marius Locke

The cellular stress response of the rat tibialis anterior (TA) muscle was investigated following 20, 40, or 60 lengthening contractions (LCs) using an in vivo model of electrical stimulation. Muscles were removed at 0, 1, 3, or 24 h after LCs and assessed for heat shock transcription factor (HSF) activation, heat shock protein (HSP) content, and/or morphological evidence of muscle fibre damage. When compared with the first muscle contraction, peak muscle torque was reduced by 26% (p < 0.05) after 20 LCs and further reduced to 56% and 60% (p < 0.001) after 40 and 60 LCs, respectively. Following 60 LCs, HSF activation was detected at 0, 1, and 3 h but was undetectable at 24 h. Hsp72 content was elevated at 24 h after 20 LCs (2.34 ± 0.37 fold, p < 0.05), 40 LCs (3.02 ± 0.31 fold, p < 0.01), and 60 LCs (3.37 ± 0.21 fold, p < 0.001). Hsp25 content increased after 40 (2.36 ± 0.24 fold, p < 0.01) and 60 LCs (2.80 ± 0.37 fold, p < 0.01). Morphological assessment of TA morphology revealed that very few fibres were damaged following 20 LCs while multiple sets of LCs (40 and 60) caused greater amounts of fibre damage. Electron microscopy showed disrupted Z-lines and sarcomeres were detectable in some muscles fibres following 20 LCs but were more prevalent and severe in muscles subjected to 40 or 60 LCs. These results suggest LCs elevate HSP content by an HSF-mediated mechanism (60 LC) and a single set of 20 LCs is capable of increasing muscle HSP content without causing significant muscle fibre damage.


Biomedicines ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 177
Author(s):  
Maria Scuto ◽  
Angela Trovato Salinaro ◽  
Sergio Modafferi ◽  
Alessandra Polimeni ◽  
Tilman Pfeffer ◽  
...  

Carnosine improves diabetic complications, including diabetic nephropathy, in in vivo models. To further understand the underlying mechanism of nephroprotection, we studied the effect of carnosine under glucose-induced stress on cellular stress response proteins in murine immortalized podocytes, essential for glomerular function. High-glucose stress initiated stress response by increasing intracellular heat shock protein 70 (Hsp70), sirtuin-1 (Sirt-1), thioredoxin (Trx), glutamate-cysteine ligase (gamma-glutamyl cysteine synthetase; γ-GCS) and heme oxygenase-1 (HO-1) in podocytes by 30–50% compared to untreated cells. Carnosine (1 mM) also induced a corresponding upregulation of these intracellular stress markers, which was even more prominent compared to glucose for Hsp70 (21%), γ-GCS and HO-1 (13% and 20%, respectively; all p < 0.001). Co-incubation of carnosine (1 mM) and glucose (25 mM) induced further upregulation of Hsp70 (84%), Sirt-1 (52%), Trx (35%), γ-GCS (90%) and HO-1 (73%) concentrations compared to untreated cells (all p < 0.001). The glucose-induced increase in 4-hydroxy-trans-2-nonenal (HNE) and protein carbonylation was reduced dose-dependently by carnosine by more than 50% (p < 0.001). Although podocytes tolerated high carnosine concentrations (10 mM), high carnosine levels only slightly increased Trx and γ-GCS (10% and 19%, respectively, compared to controls; p < 0.001), but not Hsp70, Sirt-1 and HO-1 proteins (p not significant), and did not modify the glucose-induced oxidative stress response. In podocytes, carnosine induced cellular stress tolerance and resilience pathways and was highly effective in reducing high-glucose-induced glycative and lipoperoxidative stress. Carnosine in moderate concentrations exerted a direct podocyte molecular protective action.


2010 ◽  
Vol 30 (3) ◽  
pp. 294-299 ◽  
Author(s):  
Thorsten O. Bender ◽  
Michael Böhm ◽  
Klaus Kratochwill ◽  
Hans Lederhuber ◽  
Michaela Endemann ◽  
...  

♦ BackgroundLow biocompatibility of peritoneal dialysis solution (PDS) injures mesothelial cells but also induces heat shock proteins (HSP), the main effectors of the cellular stress response. This study investigated whether overexpression of HSP upon pharmacologic induction results in cytoprotection of mesothelial cells in experimental PD.♦ MethodsStress response of mesothelial cells upon exposure to PDS was pharmacologically manipulated using glutamine as a co-inducer. In vitro, HSP-mediated cytoprotection was assessed by simultaneous measurements of HSP expression using Western blot analysis and viability testing using release of lactic dehydrogenase in cultured human mesothelial cells. In vivo, detachment of mesothelial cells from their peritoneal monolayer was assessed following exposure to PDS with and without the addition of glutamine in the acute rat model of PD.♦ ResultsIn vitro, mesothelial cell viability following exposure to PDS was significantly improved upon pharmacologic co-induction of HSP expression by glutamine (226% ± 29% vs 190% ± 19%, p = 0.001). In vivo, mesothelial cell detachment during exposure to PDS was reduced upon pharmacologic induction of HSP expression by glutamine (93 ± 39 vs 38 ± 38 cells, p = 0.044), resulting in reduced peritoneal protein loss (75 ± 7 vs 65 ± 4 mg, p = 0.045).♦ ConclusionOur results represent the first study of pharmacologic manipulation of HSP expression for cytoprotection of mesothelial cells following acute in vitro and in vivo exposure to PDS. PDS with added glutamine might represent a promising therapeutic approach against low biocompatibility of PDS but needs validation in a chronic PD model.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3069
Author(s):  
Natalia Filippova ◽  
Louis B. Nabors

Homotypic and heterotypic cell fusions via permanent membrane fusions and temporal tunneling nanotube formations in the glioma microenvironment were recently documented in vitro and in vivo and mediate glioma survival, plasticity, and recurrence. Chronic inflammation, a hypoxic environment, aberrant mitochondrial function, and ER stress due to unfolded protein accumulation upregulate cell fusion events, which leads to tumor heterogeneity and represents an adaptive mechanism to promote tumor cell survival and plasticity in cytotoxic, nutrient-deprived, mechanically stressed, and inflammatory microenvironments. Cell fusion is a multistep process, which consists of the activation of the cellular stress response, autophagy formation, rearrangement of cytoskeletal architecture in the areas of cell-to-cell contacts, and the expression of proinflammatory cytokines and fusogenic proteins. The mRNA-binding protein of ELAV-family HuR is a critical node, which orchestrates the stress response, autophagy formation, cytoskeletal architecture, and the expression of proinflammatory cytokines and fusogenic proteins. HuR is overexpressed in gliomas and is associated with poor prognosis and treatment resistance. Our review provides a link between the HuR role in the regulation of cell fusion and tunneling nanotube formations in the glioma microenvironment and the potential suppression of these processes by different classes of HuR inhibitors.


2019 ◽  
Vol 476 (21) ◽  
pp. 3141-3159 ◽  
Author(s):  
Meiru Si ◽  
Can Chen ◽  
Zengfan Wei ◽  
Zhijin Gong ◽  
GuiZhi Li ◽  
...  

Abstract MarR (multiple antibiotic resistance regulator) proteins are a family of transcriptional regulators that is prevalent in Corynebacterium glutamicum. Understanding the physiological and biochemical function of MarR homologs in C. glutamicum has focused on cysteine oxidation-based redox-sensing and substrate metabolism-involving regulators. In this study, we characterized the stress-related ligand-binding functions of the C. glutamicum MarR-type regulator CarR (C. glutamicum antibiotic-responding regulator). We demonstrate that CarR negatively regulates the expression of the carR (ncgl2886)–uspA (ncgl2887) operon and the adjacent, oppositely oriented gene ncgl2885, encoding the hypothetical deacylase DecE. We also show that CarR directly activates transcription of the ncgl2882–ncgl2884 operon, encoding the peptidoglycan synthesis operon (PSO) located upstream of carR in the opposite orientation. The addition of stress-associated ligands such as penicillin and streptomycin induced carR, uspA, decE, and PSO expression in vivo, as well as attenuated binding of CarR to operator DNA in vitro. Importantly, stress response-induced up-regulation of carR, uspA, and PSO gene expression correlated with cell resistance to β-lactam antibiotics and aromatic compounds. Six highly conserved residues in CarR were found to strongly influence its ligand binding and transcriptional regulatory properties. Collectively, the results indicate that the ligand binding of CarR induces its dissociation from the carR–uspA promoter to derepress carR and uspA transcription. Ligand-free CarR also activates PSO expression, which in turn contributes to C. glutamicum stress resistance. The outcomes indicate that the stress response mechanism of CarR in C. glutamicum occurs via ligand-induced conformational changes to the protein, not via cysteine oxidation-based thiol modifications.


Sign in / Sign up

Export Citation Format

Share Document