Propofol-induced cellular stress response in human endothelial cells in vitro

2002 ◽  
Vol 34 (6) ◽  
pp. A61
Author(s):  
M. Szajna-Zych ◽  
J. Andres ◽  
E. Stȩpien ◽  
J. Sadowski
2003 ◽  
Vol 23 (10) ◽  
pp. 3477-3486 ◽  
Author(s):  
Wesley J. Hung ◽  
Rachel S. Roberson ◽  
Jaime Taft ◽  
Daniel Y. Wu

ABSTRACT The cellular stress response protein GADD34 mediates growth arrest and apoptosis in response to DNA damage, negative growth signals, and protein malfolding. GADD34 binds to protein phosphatase PP1 and can attenuate the translational elongation of key transcriptional factors through dephosphorylation of eukaryotic initiation factor 2α (eIF2α). Recently, we reported the involvement of human SNF5/INI1 (hSNF5/INI1) protein in the functions of GADD34 and showed that hSNF5/INI1 binds GADD34 and stimulates the bound PP1 phosphatase activity. To better understand the regulatory and functional mechanisms of GADD34, we undertook a yeast two-hybrid screen with full-length GADD34 as bait in order to identify additional protein partners of GADD34. We report here that human cochaperone protein BAG-1 interacts with GADD34 in vitro and in SW480 cells treated with the proteasome inhibitor z-LLL-B to induce apoptosis. Two other proteins, Hsp70/Hsc70 and PP1, associate reversibly with the GADD34-BAG-1 complex, and their dissociation is promoted by ATP. BAG-1 negatively modulates GADD34-bound PP1 activity, and the expression of BAG-1 isoforms can also mask GADD34-mediated inhibition of colony formation and suppression of transcription. Our findings suggest that BAG-1 may function to suppress the GADD34-mediated cellular stress response and support a role for BAG-1 in the survival of cells undergoing stress.


2009 ◽  
Vol 21 (9) ◽  
pp. 44
Author(s):  
P. Y. Chin ◽  
A. M. Macpherson ◽  
J. G. Thompson ◽  
M. Lane ◽  
S. A. Robertson

In vitro culture has been shown to be detrimental for pre-implantation embryo development and this has been associated with culture stress and elevated expression of apoptotic genes. Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been shown to promote development and survival of both human and mouse pre-implantation embryos. To investigate the mechanism of action of GM-CSF in mouse embryos, gene expression was examined in in vitro cultured blastocysts with and without recombinant mouse GM-CSF (rmGM-CSF) and in vivo blastocysts flushed from Csf2 null mutant and wild-type mice. Microarray analysis of the effect of GM-CSF on transcription profile implicated apoptosis and stress response gene pathways in blastocyst responses to rmGM-CSF in vitro. Groups of 30 blastocysts were collected from in vitro cultured and in vivo developed blastocyst were analysed using quantitative real-time polymerase chain reaction (qRT-PCR). qRT-PCR analysis of in vitro blastocysts revealed that addition of rmGM-CSF causes differential expression of several genes associated with apoptosis and cellular stress pathway, including Cbl, Hspa5, Hsp90aa1, Hsp90ab1 and Gas5. Immunocytochemical analysis of common proteins of the apoptosis and cellular stress response pathways BAX, BCL2, TRP53 (p53) and HSPA1A/1B (Hsp70) in in vitro blastocysts revealed that HSPA1A/1B and BCL2 proteins were less abundant in embryos cultured in rmGM-CSF, but BAX and TRP53 were unchanged. In in vivo developed blastocysts, Csf2 null mutation resulted in elevated levels of only the heat shock protein Hsph1, suggesting that in vivo, other cytokines can compensate for GM-CSF deficiency as the absence of GM-CSF has a lesser effect on the stress response pathway. We conclude that GM-CSF is a regulator of the apoptosis and cellular stress response pathways influencing mouse pre-implantation embryo development to facilitate embryo growth and survival, and the effects of GM-CSF are particularly evident in in vitro culture media in the absence of other cytokines.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 825
Author(s):  
Hicham Mahboubi ◽  
Ossama Moujaber ◽  
Mohamed Kodiha ◽  
Ursula Stochaj

The co-chaperone HspBP1 interacts with members of the hsp70 family, but also provides chaperone-independent functions. We report here novel biological properties of HspBP1 that are relevant to the formation of cytoplasmic stress granules (SGs). SG assembly is a conserved reaction to environmental or pathological insults and part of the cellular stress response. Our study reveals that HspBP1 (1) is an integral SG constituent, and (2) a regulator of SG assembly. Oxidative stress relocates HspBP1 to SGs, where it co-localizes with granule marker proteins and polyA-RNA. Mass spectrometry and co-immunoprecipitation identified novel HspBP1-binding partners that are critical for SG biology. Specifically, HspBP1 associates with the SG proteins G3BP1, HuR and TIA-1/TIAR. HspBP1 also interacts with polyA-RNA in vivo and binds directly RNA homopolymers in vitro. Multiple lines of evidence and single-granule analyses demonstrate that HspBP1 is crucial for SG biogenesis. Thus, HspBP1 knockdown interferes with stress-induced SG assembly. By contrast, HspBP1 overexpression promotes SG formation in the absence of stress. Notably, the hsp70-binding domains of HspBP1 regulate SG production in unstressed cells. Taken together, we identified novel HspBP1 activities that control SG formation. These features expand HspBP1’s role in the cellular stress response and provide new mechanistic insights into SG biogenesis.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 99
Author(s):  
Shweta Devi ◽  
Vijay Kumar ◽  
Sandeep Kumar Singh ◽  
Ashish Kant Dubey ◽  
Jong-Joo Kim

Neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), are the most concerning disorders due to the lack of effective therapy and dramatic rise in affected cases. Although these disorders have diverse clinical manifestations, they all share a common cellular stress response. These cellular stress responses including neuroinflammation, oxidative stress, proteotoxicity, and endoplasmic reticulum (ER)-stress, which combats with stress conditions. Environmental stress/toxicity weakened the cellular stress response which results in cell damage. Small molecules, such as flavonoids, could reduce cellular stress and have gained much attention in recent years. Evidence has shown the potential use of flavonoids in several ways, such as antioxidants, anti-inflammatory, and anti-apoptotic, yet their mechanism is still elusive. This review provides an insight into the potential role of flavonoids against cellular stress response that prevent the pathogenesis of neurodegenerative disorders.


BIOspektrum ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 390-393
Author(s):  
F.-Nora Vögtle

AbstractThe majority of mitochondrial proteins are encoded in the nuclear genome, so that the nearly entire proteome is assembled by post-translational preprotein import from the cytosol. Proteomic imbalances are sensed and induce cellular stress response pathways to restore proteostasis. Here, the mitochondrial presequence protease MPP serves as example to illustrate the critical role of mitochondrial protein biogenesis and proteostasis on cellular integrity.


2021 ◽  
Vol 22 (6) ◽  
pp. 2941
Author(s):  
Marisa Pereira ◽  
Diana R. Ribeiro ◽  
Miguel M. Pinheiro ◽  
Margarida Ferreira ◽  
Stefanie Kellner ◽  
...  

Transfer RNA (tRNA) molecules contain various post-transcriptional modifications that are crucial for tRNA stability, translation efficiency, and fidelity. Besides their canonical roles in translation, tRNAs also originate tRNA-derived small RNAs (tsRNAs), a class of small non-coding RNAs with regulatory functions ranging from translation regulation to gene expression control and cellular stress response. Recent evidence indicates that tsRNAs are also modified, however, the impact of tRNA epitranscriptome deregulation on tsRNAs generation is only now beginning to be uncovered. The 5-methyluridine (m5U) modification at position 54 of cytosolic tRNAs is one of the most common and conserved tRNA modifications among species. The tRNA methyltransferase TRMT2A catalyzes this modification, but its biological role remains mostly unexplored. Here, we show that TRMT2A knockdown in human cells induces m5U54 tRNA hypomodification and tsRNA formation. More specifically, m5U54 hypomodification is followed by overexpression of the ribonuclease angiogenin (ANG) that cleaves tRNAs near the anticodon, resulting in accumulation of 5′tRNA-derived stress-induced RNAs (5′tiRNAs), namely 5′tiRNA-GlyGCC and 5′tiRNA-GluCTC, among others. Additionally, transcriptomic analysis confirms that down-regulation of TRMT2A and consequently m5U54 hypomodification impacts the cellular stress response and RNA stability, which is often correlated with tiRNA generation. Accordingly, exposure to oxidative stress conditions induces TRMT2A down-regulation and tiRNA formation in mammalian cells. These results establish a link between tRNA hypomethylation and ANG-dependent tsRNAs formation and unravel m5U54 as a tRNA cleavage protective mark.


Science ◽  
2021 ◽  
Vol 371 (6533) ◽  
pp. 1059-1063 ◽  
Author(s):  
D. Dipon Ghosh ◽  
Dongyeop Lee ◽  
Xin Jin ◽  
H. Robert Horvitz ◽  
Michael N. Nitabach

Color detection is used by animals of diverse phyla to navigate colorful natural environments and is thought to require evolutionarily conserved opsin photoreceptor genes. We report that Caenorhabditis elegans roundworms can discriminate between colors despite the fact that they lack eyes and opsins. Specifically, we found that white light guides C. elegans foraging decisions away from a blue-pigment toxin secreted by harmful bacteria. These foraging decisions are guided by specific blue-to-amber ratios of light. The color specificity of color-dependent foraging varies notably among wild C. elegans strains, which indicates that color discrimination is ecologically important. We identified two evolutionarily conserved cellular stress response genes required for opsin-independent, color-dependent foraging by C. elegans, and we speculate that cellular stress response pathways can mediate spectral discrimination by photosensitive cells and organisms—even by those lacking opsins.


Sign in / Sign up

Export Citation Format

Share Document