scholarly journals MRE11 Is Crucial for Malaria Parasite Transmission and Its Absence Affects Expression of Interconnected Networks of Key Genes Essential for Life

Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2590
Author(s):  
David S. Guttery ◽  
Abhinay Ramaprasad ◽  
David J. P. Ferguson ◽  
Mohammad Zeeshan ◽  
Rajan Pandey ◽  
...  

The meiotic recombination 11 protein (MRE11) plays a key role in DNA damage response and maintenance of genome stability. However, little is known about its function during development of the malaria parasite Plasmodium. Here, we present a functional, ultrastructural and transcriptomic analysis of Plasmodium parasites lacking MRE11 during its life cycle in both mammalian and mosquito vector hosts. Genetic disruption of Plasmodium berghei mre11 (PbMRE11) results in significant retardation of oocyst development in the mosquito midgut associated with cytoplasmic and nuclear degeneration, along with concomitant ablation of sporogony and subsequent parasite transmission. Further, absence of PbMRE11 results in significant transcriptional downregulation of genes involved in key interconnected biological processes that are fundamental to all eukaryotic life including ribonucleoprotein biogenesis, spliceosome function and iron–sulfur cluster assembly. Overall, our study provides a comprehensive functional analysis of MRE11′s role in Plasmodium development during the mosquito stages and offers a potential target for therapeutic intervention during malaria parasite transmission.

2020 ◽  
Author(s):  
David S. Guttery ◽  
Abhinay Ramaprasad ◽  
David J. P. Ferguson ◽  
Mohammad Zeeshan ◽  
Rajan Pandey ◽  
...  

AbstractThe Meiotic Recombination 11 protein (MRE11) plays a key role in DNA damage response and maintenance of genome stability. However, little is known about its function during development of the malaria parasite Plasmodium. Here, we present a functional, ultrastructural and transcriptomic analysis of Plasmodium MRE11 during its life-cycle in both mammalian and mosquito vector hosts. Genetic disruption of Plasmodium berghei mre11 (PbMRE11) results in significant retardation of oocyst development in the mosquito midgut associated with cytoplasmic and nuclear degeneration, along with concomitant ablation of sporogony and subsequent parasite transmission. Further, absence of PbMRE11 results in significant transcriptional downregulation of genes involved in key interconnected biological processes that are fundamental to all eukaryotic life including ribonucleoprotein biogenesis, spliceosome function and iron-sulphur cluster assembly. Overall, our study provides a comprehensive functional analysis of MRE11’s role in Plasmodium development during the mosquito stages and offers a potential target for therapeutic intervention during malaria parasite transmission.


2021 ◽  
Vol 22 (4) ◽  
pp. 1598
Author(s):  
Amber L. Hendricks ◽  
Christine Wachnowsky ◽  
Brian Fries ◽  
Insiya Fidai ◽  
James A. Cowan

Lipoyl synthase (LIAS) is an iron–sulfur cluster protein and a member of the radical S-adenosylmethionine (SAM) superfamily that catalyzes the final step of lipoic acid biosynthesis. The enzyme contains two [4Fe–4S] centers (reducing and auxiliary clusters) that promote radical formation and sulfur transfer, respectively. Most information concerning LIAS and its mechanism has been determined from prokaryotic enzymes. Herein, we detail the expression, isolation, and characterization of human LIAS, its reactivity, and evaluation of natural iron–sulfur (Fe–S) cluster reconstitution mechanisms. Cluster donation by a number of possible cluster donor proteins and heterodimeric complexes has been evaluated. [2Fe–2S]-cluster-bound forms of human ISCU and ISCA2 were found capable of reconstituting human LIAS, such that complete product turnover was enabled for LIAS, as monitored via a liquid chromatography–mass spectrometry (LC–MS) assay. Electron paramagnetic resonance (EPR) studies of native LIAS and substituted derivatives that lacked the ability to bind one or the other of LIAS’s two [4Fe–4S] clusters revealed a likely order of cluster addition, with the auxiliary cluster preceding the reducing [4Fe–4S] center. These results detail the trafficking of Fe–S clusters in human cells and highlight differences with respect to bacterial LIAS analogs. Likely in vivo Fe–S cluster donors to LIAS are identified, with possible connections to human disease states, and a mechanistic ordering of [4Fe–4S] cluster reconstitution is evident.


2019 ◽  
Vol 7 (12) ◽  
pp. 671 ◽  
Author(s):  
Xin Nie ◽  
Bernhard Remes ◽  
Gabriele Klug

A multitude of biological functions relies on iron-sulfur clusters. The formation of photosynthetic complexes goes along with an additional demand for iron-sulfur clusters for bacteriochlorophyll synthesis and photosynthetic electron transport. However, photooxidative stress leads to the destruction of iron-sulfur clusters, and the released iron promotes the formation of further reactive oxygen species. A balanced regulation of iron-sulfur cluster synthesis is required to guarantee the supply of this cofactor, on the one hand, but also to limit stress, on the other hand. The phototrophic alpha-proteobacterium Rhodobacter sphaeroides harbors a large operon for iron-sulfur cluster assembly comprising the iscRS and suf genes. IscR (iron-sulfur cluster regulator) is an iron-dependent regulator of isc-suf genes and other genes with a role in iron metabolism. We applied reporter gene fusions to identify promoters of the isc-suf operon and studied their activity alone or in combination under different conditions. Gel-retardation assays showed the binding of regulatory proteins to individual promoters. Our results demonstrated that several promoters in a sense and antisense direction influenced isc-suf expression and the binding of the IscR, Irr, and OxyR regulatory proteins to individual promoters. These findings demonstrated a complex regulatory network of several promoters and regulatory proteins that helped to adjust iron-sulfur cluster assembly to changing conditions in Rhodobacter sphaeroides.


2004 ◽  
Vol 279 (52) ◽  
pp. 53924-53931 ◽  
Author(s):  
Jonathan J. Silberg ◽  
Tim L. Tapley ◽  
Kevin G. Hoff ◽  
Larry E. Vickery

2021 ◽  
Author(s):  
Rabiatou A. Diarra ◽  
Mohamed M. Traore ◽  
Amy M Junnila ◽  
Sekou F. Traore ◽  
Seydou Doumbia ◽  
...  

Abstract Background Attractive Toxic Sugar Baits (ATSBs) successfully reduced Anopheles mosquito vector populations and malaria parasite transmission in Mali, but application methods need to be improved for wide-scale use, and effects on non-target organisms (NTOs) must be assessed. The goals of this study were to determine on a village level the effect of different outdoor configurations of ATSB bait stations to 1) achieve > 25% Anopheles mosquito vector daily feeding rate for both males and females and 2) minimize the effect on non-target organisms. Methods Dye was added to Attractive Sugar Bait Stations (ASB – without toxin) to mark mosquitoes feeding on the sugar baits, and CDC UV light traps were used to monitor mosquitoes for the presence of the dye. Yellow plates, pitfall traps, Malaise traps, UV light traps, UV tray traps, and sweep nets were used to trap and sample non-target organisms (NTOs) for dye, indicating feeding on the ASB. ASB stations were hung on outer walls of village homes to determine the impact of different densities of ASBs (1,2, or 3 per home) as well as the impact of ASB height (1 m or 1.8 m above the ground on sugar feeding by anophelines. These experiments were carried out separately, on consecutive nights for mosquito and NTO monitoring. Eight villages in the Koulikoro province were chosen as the experimental locations. Results The use of one ASB station per house marked 23.11% of female and 7.11% of male An. gambiae s.l. While two and three ASB stations per house gave feeding rates above the 25% goal, there was no statistical difference in the percentage of marked mosquitoes (p=0.3141 females; p=0.9336 males). There was no difference in sugar feeding on ASB stations when hung at 1.0 and 1.8 m and (p=0.5170 females; p=0.9934 males); however, ASBs at 1.8 m had less accidental damage from village residents and animals, and subsequent invasion of non-targets through rips or holes produced. ASB stations at 1.8 m above ground were fed on by three of seven monitored insect orders. Feeding rates were less than 0.015% of total trap catches and as low as 0.0001%. The monitored orders were: Hymenoptera [ants (Formicidae), bees (Apidae), and wasps (Vespidae)], Lepidoptera (Rhopalocera, Bombyces, Geometroidea, Noctuoidea, Sphingidae, Pyraloidea), Coleoptera (Carabidae, Tenebrionidae, Scarabaeidae, Cerambycidae, and Chrysomelidae), Diptera (Brachycera, Chironomidae), Hemiptera (Cicadomorpha and Heteroptera), Neuroptera (Myrmeleontiformia) and Orthoptera (Caelifera and Ensifera). Using one or two stations limited evidence of NTO feeding to ants (Hymenoptera), Brachycera, Heteroptera, Noctuiodea, Rhopalocera, wasps (Vespidae) and wild bees (Apidae) (both Hymenoptera) and had a significantly reduced percentage of stained individuals compared to three stations which had the highest feeding rates amongst NTOs. The percentages of stained individuals were as follows: 6.84 ± 2.03% Brachycera were stained followed by wasps (Hymenoptera: Vespidae) 5.32 ± 2.27%, and Rhopalocera 2.22 ± 1.79%. Hanging the optimal number of stations per house for catching mosquitoes (two) 1.8 m above ground, limited the groups of non-targets to Brachycera, Chironomidae, Noctuoidea, Rhopalocera, parasitic wasps and wasps (both Hymenoptera: Vespidae). The three most commonly stained non-target insect groups at this height were wasps (Vespidae) (1.65 ± 0.75%), Chironomidae (0.99 ± 0.37), and Brachycera (1.55 ± 0.69%). Feeding at this height only occurred when stations were damaged.Conclusions The goal of marking one quarter of the total Anopheles mosquito vector population per day was obtained using 2 bait stations at 1.8 m height above the ground on the outer walls of houses. This configuration of ATSB stations also had minimal effects on non-target insects: only 0.0001% to 0.013% of specimens (in three orders) were marked. Stations hung 1.8 m above the ground had less accidental damage from passing people and livestock. The minimal marking of non-target insects may be attributed to visual orientation of non-mosquito insects while mosquitoes, are mostly guided by olfactory cues. Furthermore, the bait stations have a membrane cover, which if intact, is impenetrable to most sugar feeding non-target insects but is pierced by the stylets of the mosquito proboscis. Thus, most non-target insects are not exposed to the toxin even if they approach the bait stations.


mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Viswanathan Lakshmanan ◽  
Matthew E. Fishbaugher ◽  
Bob Morrison ◽  
Michael Baldwin ◽  
Michael Macarulay ◽  
...  

ABSTRACT Transmission of malaria occurs during Anopheles mosquito vector blood meals, when Plasmodium sporozoites that have invaded the mosquito salivary glands are delivered to the mammalian host. Sporozoites display a unique form of motility that is essential for their movement across cellular host barriers and invasion of hepatocytes. While the molecular machinery powering motility and invasion is increasingly well defined, the signaling events that control these essential parasite activities have not been clearly delineated. Here, we identify a phosphodiesterase (PDEγ) in Plasmodium, a regulator of signaling through cyclic nucleotide second messengers. Reverse transcriptase PCR (RT-PCR) analysis and epitope tagging of endogenous PDEγ detected its expression in blood stages and sporozoites of Plasmodium yoelii. Deletion of PDEγ (pdeγ−) rendered sporozoites nonmotile, and they failed to invade the mosquito salivary glands. Consequently, PDEγ deletion completely blocked parasite transmission by mosquito bite. Strikingly, pdeγ− sporozoites showed dramatically elevated levels of cyclic GMP (cGMP), indicating that a perturbation in cyclic nucleotide balance is involved in the observed phenotypic defects. Transcriptome sequencing (RNA-Seq) analysis of pdeγ− sporozoites revealed reduced transcript abundance of genes that encode key components of the motility and invasion apparatus. Our data reveal a crucial role for PDEγ in maintaining the cyclic nucleotide balance in the malaria parasite sporozoite stage, which in turn is essential for parasite transmission from mosquito to mammal. IMPORTANCE Malaria is a formidable threat to human health worldwide, and there is an urgent need to identify novel drug targets for this parasitic disease. The parasite is transmitted by mosquito bite, inoculating the host with infectious sporozoite stages. We show that cellular signaling by cyclic nucleotides is critical for transmission of the parasite from the mosquito vector to the mammalian host. Parasite phosphodiesterase γ is essential for maintaining cyclic nucleotide balance, and its deletion blocks transmission of sporozoites. A deeper understanding of the signaling mechanisms involved in transmission might inform the discovery of novel drugs that interrupt this essential step in the parasite life cycle.


Sign in / Sign up

Export Citation Format

Share Document