scholarly journals Drought Early Warning in Agri-Food Systems

Climate ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 134
Author(s):  
Maarten van Ginkel ◽  
Chandrashekhar Biradar

Droughts will increase in frequency, intensity, duration, and spread under climate change. Drought affects numerous sectors in society and the natural environment, including short-term reduced crop production, social conflict over water allocation, severe outmigration, and eventual famine. Early action can prevent escalation of impacts, requiring drought early warning systems (DEWSs) that give current assessments and sufficient notice for active risk management. While most droughts are relatively slow in onset, often resulting in late responses, flash droughts are becoming more frequent, and their sudden onset poses challenging demands on DEWSs for timely communication. We examine several DEWSs at global, regional, and national scales, with a special emphasis on agri-food systems. Many of these have been successful, such as some of the responses to 2015–2017 droughts in Africa and Latin America. Successful examples show that early involvement of stakeholders, from DEWS development to implementation, is crucial. In addition, regional and global cooperation can cross-fertilize with new ideas, reduce reaction time, and raise efficiency. Broadening partnerships also includes recruiting citizen science and including seemingly subjective indigenous knowledge that can improve monitoring, data collection, and uptake of response measures. More precise and more useful DEWSs in agri-food systems will prove even more cost-effective in averting the need for emergency responses, improving global food security.

2020 ◽  
Vol 2 ◽  
Author(s):  
Alexia Calvel ◽  
Micha Werner ◽  
Marc van den Homberg ◽  
Andrés Cabrera Flamini ◽  
Ileen Streefkerk ◽  
...  

Early warning systems trigger early action and enable better disaster preparedness. People-centered dissemination and communication are pivotal for the effective uptake of early warnings. Current research predominantly focuses on sudden-onset hazards, such as floods, ignoring considerable differences with slow-onset hazards, such as droughts. We identify the essential factors contributing to effective drought dissemination and communication using the people-centered approach advocated in the WMOs Multi-Hazard Early Warning System Framework (MHEWS). We use semi-structured interviews with key stakeholders and focus group discussions with small-scale farmers in the Mangochi and Salima Districts of Malawi. We show that the timely release of seasonal forecast, the tailoring of the drought warning content (and its timing) to agricultural decision making, and the provision of several dissemination channels enhance trust and improve uptake of drought warning information by farmers. Our analysis demonstrates that farmers seek, prepare, and respond to drought warning information when it is provided as advice on agricultural practices, rather than as weather-related information. The information was found to be useful where it offers advice on the criteria and environmental cues that farmers can use to inform their decisions in a timely manner. Based on our findings, we propose that by focusing on enhancing trust, improving information uptake and financial sustainability as key metrics, the MHEWS can be adapted for use in monitoring the effectiveness of early warning systems.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1328
Author(s):  
Sofie Sandström ◽  
Sirkku Juhola ◽  
Aleksi Räsänen

Early warning systems (EWSs) have been developed to trigger timely action to disasters, yet persistent humanitarian crises resulting from hazards such as drought indicate that these systems need improvements. We focus our research on the county of Turkana in Kenya, where drought repeatedly results in humanitarian crises, especially with regard to food insecurity. Focusing on the key elements of the Kenyan EWS, we ask two questions: firstly, what indicators, especially meteorological drought indicators, are used in the national biannual assessments conducted by the Kenyan National Drought Management Authority and monthly drought bulletins for Turkana? Secondly, are there differences in the methodology used for analysis of meteorological indicators in the different documents? Firstly, by utilizing a food systems framework, we conduct qualitative content analysis of the use of indicators in the documents; secondly, we analyze rainfall data and its use. The EWS relies primarily on food availability indicators, with less focus for food access and utilization. The biannual assessments and the country bulletins use different sets of rainfall data and different methodologies for establishing the climate normal, leading to discrepancies in the output of the EWS. We recommend further steps to be taken towards standardization of methodologies and cooperation between various institutions to ensure streamlining of approaches.


2013 ◽  
Vol 10 (10) ◽  
pp. 12217-12254 ◽  
Author(s):  
G. Naumann ◽  
P. Barbosa ◽  
L. Garrote ◽  
A. Iglesias ◽  
J. Vogt

Abstract. Drought vulnerability is a complex concept that includes both biophysical and socio-economic drivers of drought impact that determine capacity to cope with drought. In order to develop an efficient drought early warning system and to be prepared to mitigate upcoming drought events it is important to understand the drought vulnerability of the affected regions. We propose a composite Drought Vulnerability Indicator (DVI) that reflects different aspects of drought vulnerability evaluated at Pan-African level in four components: the renewable natural capital, the economic capacity, the human and civic resources, and the infrastructure and technology. The selection of variables and weights reflects the assumption that a society with institutional capacity and coordination, as well as with mechanisms for public participation is less vulnerable to drought; furthermore we consider that agriculture is only one of the many sectors affected by drought. The quality and accuracy of a composite indicator depends on the theoretical framework, on the data collection and quality, and on how the different components are aggregated. This kind of approach can lead to some degree of scepticism; to overcome this problem a sensitivity analysis was done in order to measure the degree of uncertainty associated with the construction of the composite indicator. Although the proposed drought vulnerability indicator relies on a number of theoretical assumptions and some degree of subjectivity, the sensitivity analysis showed that it is a robust indicator and hence able of representing the complex processes that lead to drought vulnerability. According to the DVI computed at country level, the African countries classified with higher relative vulnerability are Somalia, Burundi, Niger, Ethiopia, Mali and Chad. The analysis of the renewable natural capital component at sub-basin level shows that the basins with high to moderate drought vulnerability can be subdivided in three main different geographical regions: the Mediterranean coast of Africa; the Sahel region and the Horn of Africa; the Serengeti and the Eastern Miombo woodlands in eastern Africa. Additionally, the western part of the Zambezi basin, the south-eastern border of the Congo basin and the belt of Fynbos in the Western Cape should also be included in this category. The results of the DVI at the country level were compared with drought disasters information from the EM-DAT disaster database. Even if a cause effect relationship cannot be established between the DVI and the drought disaster database, a good agreement is observed between the drought vulnerability maps and the number of persons affected by droughts. These results are a valuable contribution to the discussion on how to assess drought vulnerability and should contribute to the development of drought early warning systems in Africa.


2019 ◽  
Vol 100 (6) ◽  
pp. 1011-1027 ◽  
Author(s):  
Chris Funk ◽  
Shraddhanand Shukla ◽  
Wassila Mamadou Thiaw ◽  
James Rowland ◽  
Andrew Hoell ◽  
...  

AbstractOn a planet with a population of more than 7 billion, how do we identify the millions of drought-afflicted people who face a real threat of livelihood disruption or death without humanitarian assistance? Typically, these people are poor and heavily dependent on rainfed agriculture and livestock. Most live in Africa, Central America, or Southwest Asia. When the rains fail, incomes diminish while food prices increase, cutting off the poorest (most often women and children) from access to adequate nutrition. As seen in Ethiopia in 1984 and Somalia in 2011, food shortages can lead to famine. Yet these slow-onset disasters also provide opportunities for effective intervention, as seen in Ethiopia in 2015 and Somalia in 2017. Since 1985, the U.S. Agency for International Development’s Famine Early Warning Systems Network (FEWS NET) has been providing evidence-based guidance for effective humanitarian relief efforts. FEWS NET depends on a Drought Early Warning System (DEWS) to help understand, monitor, model, and predict food insecurity. Here we provide an overview of FEWS NET’s DEWS using examples from recent climate extremes. While drought monitoring and prediction provides just one part of FEWS NET’s monitoring system, it draws from many disciplines—remote sensing, climate prediction, agroclimatic monitoring, and hydrologic modeling. Here we describe FEWS NET’s multiagency multidisciplinary DEWS and Food Security Outlooks. This DEWS uses diagnostic analyses to guide predictions. Midseason droughts are monitored using multiple cutting-edge Earth-observing systems. Crop and hydrologic models can translate these observations into impacts. The resulting information feeds into FEWS NET reports, helping to save lives by motivating and targeting timely humanitarian assistance.


2020 ◽  
Vol 248 ◽  
pp. 111886 ◽  
Author(s):  
Adam B. Barrett ◽  
Steven Duivenvoorden ◽  
Edward E. Salakpi ◽  
James M. Muthoka ◽  
John Mwangi ◽  
...  

2018 ◽  
Vol 99 (8) ◽  
pp. ES135-ES138 ◽  
Author(s):  
Tsegaye Tadesse ◽  
Nicole Wall ◽  
Michael Hayes ◽  
Mark Svoboda ◽  
Deborah Bathke

2019 ◽  
Author(s):  
Mirianna Budimir ◽  
Amy Donovan ◽  
Sarah Brown ◽  
Puja Shakya ◽  
Dilip Gautam ◽  
...  

Abstract. Early warning systems have the potential to save lives and improve resilience. Simple early warning systems rely on real-time data and deterministic models to generate evacuation warnings; these simple deterministic models enable life-saving action, but provide limited lead time for resilience-building early action. More complex early warning systems supported by forecasts, including probabilistic forecasts, can provide additional lead time for preparation. However, barriers and challenges remain in disseminating and communicating these more complex warnings to community members and individuals at risk. Research was undertaken to analyse and understand the current early warning system in Nepal, considering available data and forecasts, information flows, early warning dissemination and decision making for early action. The research reviewed the availability and utilisation of complex forecasts in Nepal, their integration into dissemination (Department of Hydrology and Meteorology (DHM) bulletins and SMS warnings), and decision support tools (Common Alerting Protocols and Standard Operating Procedures), considering their impact on improving early action to increase the resilience of vulnerable communities to flooding.


2020 ◽  
Vol 101 (4) ◽  
pp. E368-E393 ◽  
Author(s):  
Samuel Jonson Sutanto ◽  
Henny A. J. Van Lanen ◽  
Fredrik Wetterhall ◽  
Xavier Llort

Abstract Drought early warning systems (DEWS) have been developed in several countries in response to high socioeconomic losses caused by droughts. In Europe, the European Drought Observatory (EDO) monitors the ongoing drought and forecasts soil moisture anomalies up to 7 days ahead and meteorological drought up to 3 months ahead. However, end users managing water resources often require hydrological drought warning several months in advance. To answer this challenge, a seasonal pan-European DEWS has been developed and has been running in a preoperational mode since mid-2018 under the EU-funded Enhancing Emergency Management and Response to Extreme Weather and Climate Events (ANYWHERE) project. The ANYWHERE DEWS (AD-EWS) is different than other operational DEWS in the sense that the AD-EWS provides a wide range of seasonal hydrometeorological drought forecasting products in addition to meteorological drought, that is, a broad suite of drought indices that covers all water cycle components (drought in precipitation, soil moisture, runoff, discharge, and groundwater). The ability of the AD-EWS to provide seasonal drought predictions in high spatial resolution (5 km × 5 km) and its diverse products mark the AD-EWS as a preoperational drought forecasting system that can serve a broad range of different users’ needs in Europe. This paper introduces the AD-EWS and shows some examples of different drought forecasting products, the drought forecast score, and some examples of a user-driven assessment of forecast trust levels.


2020 ◽  
Author(s):  
Thirza Teule ◽  
Anaïs Couasnon ◽  
Kostas Bischiniotis ◽  
Julia Blasch ◽  
Marc van den Homberg

<p>Flood risk, a function of hazard, exposure, and vulnerability, is increasing globally and has led to more and more disastrous flood events. Previous research has shown that taking early action is much more cost-effective than responding once the flood occurs. Such an anticipatory approach requires flood early warning systems (EWS) that provide ample lead time and that have sufficient spatial resolution. However, in developing countries, often the skill of available forecasts is insufficient to create a more effective triggering mechanism as part of a flood EWS.</p><p>This research presents an assessment of two methods to improve an existing flood EWS using a case study of the most flood-prone area of Malawi, i.e. the Lower Shire Valley. First, the forecast skill and trigger levels of the medium-term Global Flood Awareness System (GloFAS) model are determined for four gauge locations to assess how they can improve the national EWS. Secondly, an assessment is done on how the process of integrating flood forecasts based on local knowledge with official forecasts, can help to improve the EWS. This is done by semi-structured interviews at the national level and focus group discussions at the community level. The study shows that GloFAS does not predict absolute discharge values precisely, but can be used to predict floods if the correct trigger levels are set per location. The integration of multiple forecast sources is found to be useful at both national and community levels. An integration process is proposed where village stakeholders should take the leading role by using existing disaster management and civil protection coordination mechanisms. Overall, both methods can contribute to improving the flood EWS and decreasing the flood risk in the Lower Shire Valley in Malawi.</p>


Sign in / Sign up

Export Citation Format

Share Document