scholarly journals The Influence of Archaeometallurgical Copper Alloy Castings Microstructure towards Corrosion Evolution in Various Corrosive Media

2021 ◽  
Vol 2 (2) ◽  
pp. 227-247
Author(s):  
Olga Papadopoulou ◽  
Panayota Vassiliou

The local patterns at the interfaces of corrosion stratification, developed on two archaeometallurgical bronzes (a Cu-Sn-Pb and a Cu-Zn-Sn-Pb alloy), in the as-cast condition, were assessed by OM and SEM-EDS systematic elemental chemical analyses. Previously, the alloys—whose metallurgical features and electrochemical behaviour were already well studied—have been subjected to laboratory corrosion experiments. The corrosion procedures involved electrochemical anodic polarization experiments in various chloride media: 0.1 mol/L NaCl, 0.6 mol/L NaCl and two other synthetic chloride-containing solutions, representing electrolytes present in marine urban atmosphere and in the soil of coastal sites. The characterization of the Cu-Sn-Pb alloy electrochemical patinas after anodic sweep (OCP+ 0.6 V) revealed that the metal in all electrolytes undergoes extensive chloride attack and selective dissolution of copper which initiates from the dendritic areas acting as anodic sites. The most abundant corrosion products identified by FTIR in all electrochemical patinas were Cu2(OH)3Cl), Cu2(OH)2CO3 and amorphous Cu and Sn oxides. The characterization of the Cu-Sn-Pb alloy electrochemical patina after slow anodic sweep (OCP+ 1.5 V) in 0.1 mol/L NaCl reveals selective oxidation of dendrites and higher decuprification rate in these areas. Corrosion products of Sn-rich interdendritic areas are dominated by oxygen species (oxides, hydroxides, hydroxyoxides) and Cu-rich dendrites by chlorides. In the case of Cu-Zn-Sn-Pb, Zn in dendritic areas is preferentially attacked. The alloy undergoes simultaneous dezincification and decuprification, with the former progressing faster, especially in dendritic areas. The two processes at the alloy/patina interface leave behind a metal surface where α-dendrites are enriched in Sn compared to the alloy matrix. The results of this study highlight the dynamic profile of corrosion layer build-up in bronze and brass. Moreover, the perception of the dealloying mechanisms progression on casting features, at mid-term corrosion stages, is extended.

Alloy Digest ◽  
1975 ◽  
Vol 24 (7) ◽  

Abstract TRIBALOY 400 consists of a hard, intermetallic phase in a softer, cobalt-base alloy matrix. It can be cast or hardfaced. As alloy powder it can be plasma sprayed or blended with other powders for P/M (Powder/Metallurgy) processing. Uses include anti-wear surfaces and bearings or seals operating in corrosive media. This datasheet provides information on composition, physical properties, hardness, tensile properties, and compressive strength as well as fracture toughness. It also includes information on corrosion and wear resistance as well as forming, heat treating, machining, and joining. Filing Code: Co-72. Producer or source: Tribaloy Products.


2021 ◽  
pp. 002199832110055
Author(s):  
Zeeshan Ahmad ◽  
Sabah Khan

Alumnium alloy LM 25 based composites reinforced with boron carbide at different weight fractions of 4%, 8%, and 12% were fabricated by stir casting technique. The microstructures and morphology of the fabricated composites were studied by scanning electron microscopy and energy dispersive spectroscopy. Elemental mapping of all fabricated composites were done to demonstrate the elements present in the matrix and fabricated composites. The results of microstructural analyses reveal homogenous dispersion of reinforcement particles in the matrix with some little amount of clustering found in composites reinforced with 12% wt. of boron carbide. The mechanical characterization is done for both alloy LM 25 and all fabricated composites based on hardness and tensile strength. The hardness increased from 13.6% to 21.31% and tensile strength 6.4% to 22.8% as reinforcement percentage of boron carbide particles increased from 0% to 12% wt. A fractured surface mapping was also done for all composites.


Author(s):  
Mario Villalobos-Forbes ◽  
Germain Esquivel-Hernández ◽  
Ricardo Sánchez-Murillo ◽  
Rolando Sánchez-Gutiérrez ◽  
Ioannis Matiatos

2011 ◽  
Vol 58 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Guo Cheng Lv ◽  
Zi Se Wang ◽  
Li Mei Wu ◽  
Chunchun Xu

2019 ◽  
Vol 787 ◽  
pp. 543-550 ◽  
Author(s):  
Anıl Alten ◽  
Eray Erzi ◽  
Özen Gürsoy ◽  
Gökçe Hapçı Ağaoğlu ◽  
Derya Dispinar ◽  
...  

2005 ◽  
Vol 5 (10) ◽  
pp. 2739-2748 ◽  
Author(s):  
S. Mogo ◽  
V. E. Cachorro ◽  
A. M. de Frutos

Abstract. Samples of atmospheric aerosol particles were collected in Valladolid, Spain, during the winter of 2003-2004. The measurements were made with a Dekati PM10 cascade impactor with four size stages: greater than 10 µm, between 2.5 to 10 µm, 1 to 2.5 µm and less than 1 µm. The size and shape of the particles were analyzed with a scanning electron microscope (SEM) and elemental analysis was done with an energy dispersive x-ray analysis (EDX). We present an evaluation by size, shape and composition of the major particulate species in the Valladolid urban atmosphere. The total aerosol concentration is very variable, ranging from 39.86 µg·m-3 to 184.88 µg·m-3 with the coarse particles as the dominant mass fraction. Emphasis was given to fine particles (<1 µm), for which the visible (400 nm to 650 nm) light absorption coefficients were measured using the integrating plate technique. We have made some enhancements in the illumination system of this measurement system. The absorption coefficient, σa, is highly variable and ranges from 7.33×10-6 m-1 to 1.01×10-4 m-1 at a wavelength of 550 nm. There is an inverse power law relationship between σa and wavelength, with an average exponent of -0.8.


2021 ◽  
Vol 168 (2) ◽  
pp. 026510
Author(s):  
L. Massot ◽  
M. Gibilaro ◽  
D. Quaranta ◽  
P. Chamelot

2018 ◽  
Author(s):  
Kuangyou Yu ◽  
Qiao Zhu ◽  
Ke Du ◽  
Xiao-Feng Huang

Abstract. Organic nitrates are important atmospheric species that significantly affect the cycling of NOx and ozone production. However, characterization of particulate organic nitrates and their sources in inorganic nitrate-abundant particles in polluted atmosphere is a big challenge, and has been little performed in the literature. In this study, an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed at an urban site in South China from 2015 to 2016 to characterize particulate organic nitrates with high time resolution. Based on two different data processing methods, 13–21 % of the total measured nitrates was identified to be organic nitrates in spring, 41–64 % in summer and 16%–25 % in autumn; however, in winter, most measured nitrates were inorganic. The good correlation between organic nitrates and fresh secondary organic aerosol identified by the positive matrix factorization method at night rather than in the daytime indicated a potentially important role of nighttime secondary formation. Therefore, we theoretically estimated nighttime NO3 radical concentrations and SOA formation using the various VOCs measured simultaneously. Consequently, the calculated products of monoterpene reacting with NO3 agreed well with the organic nitrates in terms of both concentration and variation, suggesting that the biogenic VOC reactions with NO3 at night are the dominant formation pathway for particulate organic nitrates in polluted atmosphere, despite of much higher abundance of anthropogenic VOCs.


2020 ◽  
Vol 230 ◽  
pp. 117459 ◽  
Author(s):  
Sheng-Cheng Shao ◽  
Yan-Lin Zhang ◽  
Yun-Hua Chang ◽  
Fang Cao ◽  
Yu-Chi Lin ◽  
...  

2014 ◽  
Vol 51 ◽  
pp. 1-14 ◽  
Author(s):  
Michel L. Schlegel ◽  
Christian Bataillon ◽  
Florence Brucker ◽  
Cécile Blanc ◽  
Dimitri Prêt ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document