scholarly journals Impact of Velocity Second Slip and Inclined Magnetic Field on Peristaltic Flow Coating with Jeffrey Fluid in Tapered Channel

Coatings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 30 ◽  
Author(s):  
Najma Saleem ◽  
Safia Akram ◽  
Farkhanda Afzal ◽  
Emad H. Aly ◽  
Anwar Hussain

The peristaltic flow of velocity second slip boundary conditions and inclined magnetic field of Jeffrey fluid by means of heat and mass transfer in asymmetric channel was inspected in the present study. Leading equations described the existing flow were then simplified under lubrication approach. Therefore, exact solutions of stream function, concentration and temperature were deduced. Further, the numerical solutions of pressure rise and pressure gradient were computed using Mathematica software. Furthermore, the effect of the second slip parameter was argued via graphs. It has been depicted that this kind of slip is mandatory and very imperative to foresee the physical model. On the other hand, false results will be obtained.

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Ajaz Ahmad Dar ◽  
K. Elangovan

This present article deals with the interaction of both rotation and inclined magnetic field on peristaltic flow of a micropolar fluid in an inclined symmetric channel with sinusoidal waves roving down its walls. The highly nonlinear equations are simplified by adopting low Reynolds number and long wavelength approach. The analytical and numerical solutions for axial velocity, spin velocity, volume flow rate, pressure gradient, pressure rise per wavelength, and stream function have been computed and analyzed. The quantitative effects of various embedded physical parameters are inspected and displayed graphically with fussy prominence. Pressure rise, frictional forces, and pumping phenomenon are portrayed and characterized graphically.


2017 ◽  
Vol 14 (1) ◽  
pp. 7-18 ◽  
Author(s):  
Ajaz Ahmad Dar ◽  
K. Elangovan

Purpose This paper aims to intend for investigating the influence of an inclined magnetic field on the peristaltic flow of a couple stress fluid through an inclined channel with heat and mass transfer. Design/methodology/approach Long wavelength and low Reynolds number methodology is actualized for simplifying the highly nonlinear equations. Mathematical expressions of axial velocity, pressure gradient and volume flow rate are obtained. Pressure rise, frictional force and pumping phenomenon are portrayed and symbolized graphically. Exact and numerical solutions have been carried out. The computed results are presented graphically for various embedded parameters. Temperature and concentration profile are also scrutinized and sketched. Findings Results from the current study concluded that the fluid motion can be enhanced by increasing the inclination of both the magnetic field and the channel. Originality/value The elemental characteristics of this analysis is a complete interpretation of the influence of couple stress parameter and inclination of magnetic field on the velocity, pressure gradient, pressure rise and frictional forces.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 319
Author(s):  
V. Jagadeesh ◽  
S. Sreenadh ◽  
P. Lakshminarayana2

In this paper we have studied the effects of inclined magnetic field, porous medium and wall properties on the peristaltic transport of a Jeffry fluid in an inclined non-uniform channel. The basic governing equations are solved by using the infinite wave length and small Reynolds number assumptions. The analytical solutions have obtained for velocity and stream function. The variations in velocity for different values of important parameters have presented in graphs. The results are discussed for both uniform and non-uniform channels. 


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoyi Guo ◽  
Jianwei Zhou ◽  
Huantian Xie ◽  
Ziwu Jiang

The magnetohydrodynamic (MHD) peristaltic flow of the fractional Jeffrey fluid through porous medium in a nonuniform channel is presented. The fractional calculus is considered in Darcy’s law and the constitutive relationship which included the relaxation and retardation behavior. Under the assumptions of long wavelength and low Reynolds number, the analysis solutions of velocity distribution, pressure gradient, and pressure rise are investigated. The effects of fractional viscoelastic parameters of the generalized Jeffrey fluid on the peristaltic flow and the influence of magnetic field, porous medium, and geometric parameter of the nonuniform channel are presented through graphical illustration. The results of the analogous flow for the generalized second grade fluid, the fractional Maxwell fluid, are also deduced as special cases. The comparison among them is presented graphically.


2017 ◽  
Vol 95 (10) ◽  
pp. 885-893 ◽  
Author(s):  
H.H. Sherief ◽  
M.S. Faltas ◽  
S. El-Sapa

The steady unidirectional flow of an isothermal, incompressible, magneto-micropolar hydrodynamic fluid in an infinitely magnetic insulating circular cylinder is considered. The fluid is under a constant magnetic field perpendicular to the axis of the cylinder. The slip boundary conditions for velocity and microrotation are applied. Closed forms for the velocity, microrotation, and magnetic field are obtained for Poiseuille and Couette flows. Expressions for the rate of flow and skin coefficients are calculated. Variations of the physical quantities with respect to micropolarity parameter, slip parameters, and Hartman number are studied and their variations are illustrated graphically. Similar results are obtained for electro- micropolar fluids.


2016 ◽  
Vol 16 (05) ◽  
pp. 1650063 ◽  
Author(s):  
NOREEN SHER AKBAR ◽  
M. RAZA ◽  
R. ELLAHI

The peristaltic flow of a carbon nanotubes (CNTs) water fluid investigate the effects of heat generation and magnetic field in permeable vertical diverging tube is studied. The mathematical formulation is presented, the resulting equations are solved exactly. The obtained expressions for pressure gradient, pressure rise, temperature, velocity profile are described through graphs for various pertinent parameters. The streamlines are drawn for some physical quantities to discuss the trapping phenomenon. It is observed that pressure gradient profile is decreasing by increase of Darcy number [Formula: see text] because Darcy number is due to porous permeable walls of the tube and when walls are porous fluid cannot easily flow in tube, so that will decrease the pressure gradient.


2010 ◽  
Vol 65 (6-7) ◽  
pp. 483-494 ◽  
Author(s):  
Sohail Nadeem ◽  
Safia Akram

In the present paper, we have studied the influence of heat transfer and magnetic field on a peristaltic transport of a Jeffrey fluid in an asymmetric channel with partial slip. The complicated Jeffrey fluid equations are simplified using the long wave length and low Reynolds number assumptions. In the wave frame of reference, an exact and closed form of Adomian solution is presented. The expressions for pressure drop, pressure rise, stream function, and temperature field have been calculated. The behaviour of different physical parameters has been discussed graphically. The pumping and trapping phenomena of various wave forms (sinusoidal, multisinusoidal, square, triangular, and trapezoidal) are also studied.


Sign in / Sign up

Export Citation Format

Share Document