scholarly journals High Temperature Corrosion Behaviour of Aluminide-Coated Cast Iron for an Exhaust Manifold Application

Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 705
Author(s):  
Panya Kerdbua ◽  
Mohammad Hassan Shirani Bidabadi ◽  
Walairat Chandra-ambhorn ◽  
Somrerk Chandra-ambhorn

To reduce the pollution emission from vehicles, an improvement on the combustion process is expected, leading to increased exhaust gas temperature. As a result, the development of new materials for an exhaust manifold used at higher temperatures is required. A cost-effective cast iron exhaust manifold treated by aluminising pack cementation was developed in the present work to combat the high temperature corrosion. Its kinetics under cyclic oxidation in N2–12%O2–10%H2O at 850 °C was parabolic with the rate constant (kp) of 5.66 × 10−12 g2 cm–4 s–1, about two orders of magnitude lower than that of the bare cast iron, which indicated the protectiveness of the applied coating. These results relate to the protective alumina formation for the aluminised cast iron and the formation of the less protective iron oxides for the bare cast iron after oxidation, as evidenced by the XRD and Raman spectroscopy results. The addition of 10% water vapour to N2–12%O2 thickened the aluminide layer from 344 μm for the sample oxidised in dry atmosphere to 409 μm for the sample oxidised humidified one. It accelerated the oxidation rate of the aluminised cast iron as the kp value increased by 8.5 times, and also increased the hardness of the aluminised surface, as it was 364 HV for the sample exposed to dry atmosphere and 420 HV for the sample exposed to humidified one. The latter result implied the possibility of the hydrogen dissolution into the metal surface. The roles of hydroxyl ion and dissolved hydrogen on the oxidation and evolution of the aluminide layer after exposure to water vapour were proposed.

2019 ◽  
Vol 66 (2) ◽  
pp. 236-241 ◽  
Author(s):  
Somrerk Chandra-Ambhorn ◽  
Neramit Krasaelom ◽  
Tummaporn Thublaor ◽  
Sirichai Leelachao

Purpose This study aims to apply the pack cementation to develop the Fe-Al layers on the surface of FC 25 cast iron in order to increase the high-temperature corrosion resistance of the alloy. Design/methodology/approach Pack cementation was applied on the surface of FC 25 cast iron at 1,050°C. The bare and aluminised alloys were subjected to the oxidation test in 20 per cent O2-N2 at 850 °C. Scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD) were used for characterisation. Findings The layers of pack cementation consisted of Fe2Al5, FeAl2 and FeAl, and solid solution alloyed with Al. The oxidation kinetics of the bare cast iron was parabolic. Mass gain of the aluminised cast iron was significantly decreased compared with that of the bare cast iron. This was because of the protective alumina formation on the aluminised alloy surface. Al in the Fe–Al layer also tended to be homogenised during oxidation. Originality/value Even though the aluminising of alloys was extensively studied, the application of that process to the FC 25 cast iron grade was originally developed in this work. The significantly reduced mass gain of the aluminised FC 25 cast iron makes the studied alloy be promising for the use as a valve seat insert in an agricultural single-cylinder four-stroke engine, which might be run by using a relatively cheaper fuel, i.e. LPG, but as a consequence requires the higher oxidation resistance of the engine parts.


2001 ◽  
Vol 369-372 ◽  
pp. 239-246 ◽  
Author(s):  
V. Lépingle ◽  
G. Louis ◽  
D. Petelot ◽  
B. Lefebvre ◽  
J.C. Vaillant

2021 ◽  
pp. 110032
Author(s):  
Jieyan Yuan ◽  
Shujuan Dong ◽  
Jianing Jiang ◽  
Longhui Deng ◽  
Xueqiang Cao

Author(s):  
Cristiana Delprete ◽  
Raffaella Sesana

The paper presents and discusses a low-cycle fatigue life prediction energy-based model. The model was applied to a commercial cast iron automotive exhaust manifold. The total expended energy until fracture proposed by the Skelton model was modified by means of two coefficients which take into account of the effects of mean stress and/or mean strain, and the presence of high temperature. The model was calibrated by means of experimental tests developed on Fe–2.4C–4.6Si–0.7Mo–1.2Cr high-temperature-resistant ductile cast iron. The thermostructural transient analysis was developed on a finite element model built to overtake confidentiality industrial restrictions. In addition to the commercial exhaust manifold, the finite element model considers the bolts, the gasket, and a cylinder head simulacrum to consider the corresponding thermal and mechanical boundary conditions. The life assessment performance of the energy-based model with respect the cast iron specimens was compared with the corresponding Basquin–Manson–Coffin and Skelton models. The model prediction fits the experimental data with a good agreement, which is comparable with both the literature models and it shows a better fitting at high temperature. The life estimations computed with respect the exhaust manifold finite element model were compared with different multiaxial literature life models and literature data to evaluate the life prediction capability of the proposed energy-based model.


1999 ◽  
Vol 7 (10) ◽  
pp. 1183-1194 ◽  
Author(s):  
J. Klöwer ◽  
U. Brill ◽  
U. Heubner

Sign in / Sign up

Export Citation Format

Share Document