scholarly journals Enhanced Corrosion Protection of Epoxy/ZnO-NiO Nanocomposite Coatings on Steel

Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 783 ◽  
Author(s):  
Muna Ibrahim ◽  
Karthik Kannan ◽  
Hemalatha Parangusan ◽  
Shady Eldeib ◽  
Omar Shehata ◽  
...  

ZnO-NiO nanocomposite with epoxy coating on mild steel has been fabricated by the sol–gel assisted method. The synthesized sample was used to study corrosion protection. The analysis was performed by electrochemical impedance spectroscopy in 3.5% NaCl solution. The structural and morphological characterization of the metal oxide nanocomposite was carried out using XRD and SEM with Energy Dispersive Absorption X-ray (EDAX) analysis. XRD reveals the ZnO-NiO (hexagonal and cubic) structure with an average ZnO-NiO crystallite size of 26 nm. SEM/EDAX analysis of the ZnO-NiO nanocomposite confirms that the chemical composition of the samples consists of: Zn (8.96 ± 0.11 wt.%), Ni (10.53 ± 0.19 wt.%) and O (80.51 ± 3.12 wt.%). Electrochemical Impedance Spectroscopy (EIS) authenticated that the corrosion resistance has improved for the nanocomposites of ZnO-NiO coated along with epoxy on steel in comparison to that of the pure epoxy-coated steel.

2011 ◽  
Vol 418-420 ◽  
pp. 1869-1872
Author(s):  
Maziidah Hamidi ◽  
Syafawati Nadiah Mohamed ◽  
Muhd Zu Azhan Yahya

The Li-ion fast conductor, Li1-XAlxTi2-X(PO4)3 (LATP) compound were synthesized by a sol-gel method. Effects due to the addition of Al3+ into Li1-XAlxTi2-X(PO4)3 (x=0.0-0.5) glass-ceramics system have been investigated using electrochemical impedance spectroscopy (EIS), X-ray differential analysis (XRD) and permittivity studies. The crystalline phase of the samples obtained confirming that they had a characteristic of glass-ceramics structure.


2017 ◽  
Vol 64 (4) ◽  
pp. 365-370 ◽  
Author(s):  
Sebahattin Kirtay

Purpose The purpose of this paper is to investigate the corrosion resistance of SiO2-Al2O3 coating on mild steel. Design/methodology/approach SiO2-Al2O3 was coated using sol-gel method, and electrochemical measurements were applied to assess the performance of the coated steel. Findings The main conclusion is that SiO2-Al2O3-coated specimens acquired a higher corrosion resistance than that of uncoated specimen. icorr values of the coated specimens were between 12 and 14 times smaller than those of uncoated specimen. The coated specimens exhibited a higher Rcor value at electrochemical impedance spectroscopy analysis. The high values of Rcor and low values of CPEdl observed within the SiO2-Al2O3-coated samples imply an improved anti-corrosion capability. Originality/value In this work, there are three points of originality. First, steel specimens were coated with ormosil-based solution by applying sol-gel dip coating method. Second, both SiO2 and Al2O3 coatings were applied simultaneously at a considerably low temperature, i.e. 200 °C. Finally, the performance of the coated materials against wet corrosion was improved significantly.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 113
Author(s):  
Jacob Ress ◽  
Ulises Martin ◽  
Juan Bosch ◽  
David M. Bastidas

The protection of mild steel by modified epoxy coating containing colophony microencapsulated corrosion inhibitors was investigated in this study. The corrosion behavior of these epoxy coatings containing colophony microcapsules was studied by electrochemical analysis using cyclic potentiodynamic polarization and electrochemical impedance spectroscopy. The microcapsule coating showed decreased corrosion current densities of 2.75 × 10−8 and 3.21 × 10−8 A/cm2 along with corrosion potential values of 0.349 and 0.392 VSCE for simulated concrete pore solution and deionized water with 3.5 wt.% NaCl, respectively, indicating improved corrosion protection in both alkaline and neutral pH. Electrochemical impedance spectroscopy analysis also showed charge transfer resistance values over one order of magnitude higher than the control sample, corroborating the electrochemical corrosion potential and current density testing results. Overall, the use of colophony microcapsules showed improved corrosion protection in simulated concrete pore solution and DI water solutions containing chloride ions.


2020 ◽  
Vol 11 (3) ◽  
pp. 364-364
Author(s):  
Maciej Ratynski ◽  
Bartosz Hamankiewicz ◽  
Michał Krajewski ◽  
Maciej Boczar ◽  
Dominika A. Buchberger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document