Electrochemical property analysis of SiO2-Al2O3-coated steel by electrochemical impedance spectroscopy

2017 ◽  
Vol 64 (4) ◽  
pp. 365-370 ◽  
Author(s):  
Sebahattin Kirtay

Purpose The purpose of this paper is to investigate the corrosion resistance of SiO2-Al2O3 coating on mild steel. Design/methodology/approach SiO2-Al2O3 was coated using sol-gel method, and electrochemical measurements were applied to assess the performance of the coated steel. Findings The main conclusion is that SiO2-Al2O3-coated specimens acquired a higher corrosion resistance than that of uncoated specimen. icorr values of the coated specimens were between 12 and 14 times smaller than those of uncoated specimen. The coated specimens exhibited a higher Rcor value at electrochemical impedance spectroscopy analysis. The high values of Rcor and low values of CPEdl observed within the SiO2-Al2O3-coated samples imply an improved anti-corrosion capability. Originality/value In this work, there are three points of originality. First, steel specimens were coated with ormosil-based solution by applying sol-gel dip coating method. Second, both SiO2 and Al2O3 coatings were applied simultaneously at a considerably low temperature, i.e. 200 °C. Finally, the performance of the coated materials against wet corrosion was improved significantly.

Respuestas ◽  
2016 ◽  
Vol 13 (2) ◽  
pp. 5-10
Author(s):  
Jorge Hernando Bautista-Ruiz ◽  
César Armando Ortiz-Otálora ◽  
Enrique Vera-Lopez

Este trabajo muestra un estudio electroquímico de recubrimientos SiO2 TiO2 ZrO2 obtenidos por el método sol-gel, sinterizados vía plasma y vía convencional. Los recubrimientos se conformaron a partir de Si(OC2H5)4, Ti(OBu)4 y Zr(OC3H7)4, se depositaron sobre sustratos de acero ANSI/304 mediante dip-coating en monocapa y bicapa. El proceso de densificado vía plasma se realizó a temperaturas del sustrato de 250 ºC, 300 ºC y 330 ºC y el convencional a 400 ºC y a una velocidad de calentamiento de 2 ºC/min. El comportamiento anticorrosivo se estudió mediante las técnicas de espectroscopía de impedancia electroquímica (EIS) y Tafel. Se observó que el proceso de sinterización vía plasma, mejora la resistencia a la corrosión con respecto al método convencional.Palabras Clave: sol-gel; corrosión; plasma; EIS;Tafel Abstract This work shows a comparative electrochemical study among the anticorrosive properties of coatings SiO2 TiO2 ZrO2 obtained by the method sol-gel and plasma sintering process and conventional. The coatings conformed to starting from Si(OC2 H5 )4 , Ti(OBu)4 and Zr(OC3 H7 )4 . These were deposited on steel substrate 304 by means of dip-coating in mono-layer and bi-layer. The plasma sintering process was carried out to temperatures of the substrate of 250 ºC, 300 ºC and 330 ºC and the conventional to 400 ºC and a speed of heating of 2 ºC/min. the anticorrosive behavior was studied by means of the techniques of electrochemical impedance spectroscopy (EIS) and Tafel. It was observed that the plasma sintering process, it improves the resistance to the corrosive attack to in regard to the conventional method.Keywords: sol-gel, corrosion, plasma, EIS, Tafel


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 783 ◽  
Author(s):  
Muna Ibrahim ◽  
Karthik Kannan ◽  
Hemalatha Parangusan ◽  
Shady Eldeib ◽  
Omar Shehata ◽  
...  

ZnO-NiO nanocomposite with epoxy coating on mild steel has been fabricated by the sol–gel assisted method. The synthesized sample was used to study corrosion protection. The analysis was performed by electrochemical impedance spectroscopy in 3.5% NaCl solution. The structural and morphological characterization of the metal oxide nanocomposite was carried out using XRD and SEM with Energy Dispersive Absorption X-ray (EDAX) analysis. XRD reveals the ZnO-NiO (hexagonal and cubic) structure with an average ZnO-NiO crystallite size of 26 nm. SEM/EDAX analysis of the ZnO-NiO nanocomposite confirms that the chemical composition of the samples consists of: Zn (8.96 ± 0.11 wt.%), Ni (10.53 ± 0.19 wt.%) and O (80.51 ± 3.12 wt.%). Electrochemical Impedance Spectroscopy (EIS) authenticated that the corrosion resistance has improved for the nanocomposites of ZnO-NiO coated along with epoxy on steel in comparison to that of the pure epoxy-coated steel.


2014 ◽  
Vol 43 (6) ◽  
pp. 371-378 ◽  
Author(s):  
N.A. Mat Nor ◽  
L. Ismail ◽  
S.K.M. Jamari ◽  
K. Ramesh ◽  
B. Vengadaesvaran ◽  
...  

Purpose This paper aims to analyse the coating behaviour in corrosion environment as well as to evaluate the best percentage amount of copper oxide and copper needed for organic coating in order to prevent the corrosion degradation. Electrochemical impedance spectroscopy (EIS) studies have been conducted in order to evaluate the corrosion performance of polyester-epoxy-copper oxide and polyester-epoxy-copper coating systems. Design/methodology/approach The availability of this modem instruments is used to obtain impedance data as well as computer programs to interpret the results that made the technique popular. In addition, EIS is well suited to the study of polymer-coated metals. Findings The results showed that samples containing 25 weight per cent of copper oxide and copper (90P25CuO and 90P25Cu) obtained the excellent corrosion properties from the first day up to 30 days of NaCl immersion. The highest corrosion resistance values obtained by 90P25CuO and 90P25Cu on the 30th day were 7.107 × 108 O and 5.701 × 108 O, respectively, with lower double layer capacitance of 1.407 × 10−9 Farad and 3.935 × 10−9 Farad, respectively. Moreover, the water uptake gained by these two coating samples was the lowest at the end of immersion, which was 0.0084 for 90P25CuO and 0.1592 for 90P25Cu, showing that the sample has good corrosion performance. Originality/value This paper discussed on the highest corrosion resistance, double layer capacitance and the water uptake of the copper (Cu) and copper oxide (CuO) coating system obtained from the EIS measurements.


2006 ◽  
Vol 13 (04) ◽  
pp. 345-349 ◽  
Author(s):  
J. RYOU ◽  
S. SHAH

Electrochemical impedance spectroscopy (EIS) is one of the electrochemical techniques used in materials science. The present measurements are used to evaluate the corrosion resistance of new types of coated steel rebar used in reinforced concrete. In this study, Si -based coating materials are used and evaluated, because adding Si to metals and alloys, including steel, generally increases their corrosion, oxidation, and erosion resistance. The result suggests that electrochemical impedance spectroscopy may be useful for monitoring corrosion activity on coated steel rebars. Based upon impedance changes, it appears that the silicon powder coating bonds well to the steel, and that the coating has a good performance.


2014 ◽  
Vol 789 ◽  
pp. 495-500
Author(s):  
Bing Ying Wang ◽  
Qing Hao Shi ◽  
Wen Long Zhang

The polyurea was modified by adding different amounts of nanometer ZnO. The corrosion behavior of polyurea/primer composite coating system in wet-dry cyclic environment of 3.5% NaCl solution was studied by using the Electrochemical Impedance Spectroscopy (EIS) measurement and adhesion test technology. The experimental result showed that, different mass fractions of nanometer ZnO had different influences on the corrosion resistance property of coating. When the mass fraction of nanometer ZnO was 5%, the composite coating had the largest protective action. The corrosion resistance property of nanometer ZnO can be improved by increasing the density of polyurea coating, however, the corrosion resistance property of polyurea coating will be weakened in case of exceeding the critical adding amount.


2015 ◽  
Vol 227 ◽  
pp. 515-518 ◽  
Author(s):  
Luigi Calabrese ◽  
Lucio Bonaccorsi ◽  
Chiara Borsellino ◽  
Angela Caprì ◽  
Francesca Fabiano ◽  
...  

In this work the assessment of the corrosion performances in saliva solution of NdFeB magnets coated with silane layers was studied for its application in orthodontic brackets. The silane film, deposited by dip coating technique, has been prepared with varying dipping steps, with the purpose to identify the number of layers able to achieve an optimal protective action. Corrosion protection performance, during immersion in Fusayama synthetic saliva solution, was evaluated by means electrochemical impedance spectroscopy (EIS). The silane coatings evidenced good barrier properties resulting in an improvement of the anti-corrosion performances of the magnets. Better results were observed for samples with at least 15 layers of silane, that evidenced still acceptable protective action after three days of immersion in a Fusayama synthetic saliva solution.


Author(s):  
Sajjad Sadeghi ◽  
Hadi Ebrahimifar

Abstract The use of ceramic particles in the matrix of alloy coatings during the electroplating process has received considerable attention. These particles can create properties such as high corrosion resistance, insolubility, high-temperature stability, strong hardness, and self-lubrication capability. Herein, an Ni–P–W–TiO2 coating was deposited on an AISI 304L steel substrate using the electroplating method. Electroplating was performed at current densities of 10, 15, 20, and 25 mA · cm–2, and the effect of current density on microstructure, corrosion behavior, and wear behavior was investigated. The coatings were characterized by means of scanning electron microscopy. To investigate corrosion resistance, potentiodynamic polarization and electrochemical impedance spectroscopy tests were performed in a 3.5% NaCl aqueous solution. A pin-on-disk test was conducted to test the wear resistance of uncoated and coated samples. Sample micro-hardness was also measured by Vickers hardness testing. Examination of the microstructure revealed that the best coating was produced at a current density of 20 mA · cm–2. The results of potentiodynamic polarization and electrochemical impedance spectroscopy tests were consistent with microscopic images. The coating created at the current density of 20 mA · cm–2 had the highest corrosion resistance compared to other coated and non-coated samples. Furthermore, the results of the wear test showed that increasing the current density of the electroplating path up to 20 mA · cm–2 enhances micro-hardness and wear resistance.


2012 ◽  
Vol 585 ◽  
pp. 488-492
Author(s):  
Adeeba F. Khan ◽  
Awanikumar P. Patil ◽  
T. Subba Rao

Cu-10Ni alloy suffers accelerated corrosion in sulfide polluted seawater. As an alternative, a new single phased, Cu-28%Zn-5%Ni-5%Mn-2%Fe alloy (hereby referred as CNZ-alloy) is developed and tested for the corrosion resistance in clean and sulfide polluted synthetic seawater. The CNZ-alloy showed better corrosion resistance than the standard Cu-10Ni alloy in both the test solutions i.e. clean and sulfide polluted synthetic seawater with . The results are discussed on the basis of polarization and electrochemical impedance spectroscopy. The better corrosion resistance of CNZ-alloy is attributed to the formation of protective ZnS and MnS2 films.


Sign in / Sign up

Export Citation Format

Share Document