Synthesis and study by FTIR, 31P NMR and electrochemical impedance spectroscopy of vanadium zinc phosphate glasses prepared by sol–gel route

2016 ◽  
Vol 432 ◽  
pp. 459-465 ◽  
Author(s):  
Driss Rair ◽  
Abdelhadi Rochdi ◽  
Abdelilah Majjane ◽  
Touria Jermoumi ◽  
Abdelkrim Chahine ◽  
...  
2018 ◽  
Vol 4 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Nilesh S. Bagal ◽  
Vaibhav S. Kathavate ◽  
Pravin P. Deshpande

AbstractThe present study aims at deposition of zinc phosphate coatings on low carbon steel with incorporated nano- TiO2 particles by chemical phosphating method. The coated low carbon steel samples were assessed in corrosion studies using electrochemical impedance spectroscopy and potentiodynamic polarization techniques (Tafel) in 3.5% NaCl solution. Morphology and chemical composition of the coatings were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy in order to observe growth of coating. Significant variations in the coating weight, porosity and corrosion resistance were observed with the addition of nano- TiO2 in the phosphating bath. Corrosion rate of nano-TiO2 chemical phosphate coated samples was found to be 3.5 milli inches per year which was 3 times less than the normal phosphate-coated sample (8 mpy). Electrochemical impedance spectroscopy studies reveal reduction of porosity of nano-TiO2 phosphate coated samples. It was found that nano-TiO2 particles in the phosphating solution yielded uniform phosphate coatings of higher coating weight, fewer defects and enhanced corrosion resistance than the normal zinc phosphate coatings (developed using normal phosphating bath).


Respuestas ◽  
2016 ◽  
Vol 13 (2) ◽  
pp. 5-10
Author(s):  
Jorge Hernando Bautista-Ruiz ◽  
César Armando Ortiz-Otálora ◽  
Enrique Vera-Lopez

Este trabajo muestra un estudio electroquímico de recubrimientos SiO2 TiO2 ZrO2 obtenidos por el método sol-gel, sinterizados vía plasma y vía convencional. Los recubrimientos se conformaron a partir de Si(OC2H5)4, Ti(OBu)4 y Zr(OC3H7)4, se depositaron sobre sustratos de acero ANSI/304 mediante dip-coating en monocapa y bicapa. El proceso de densificado vía plasma se realizó a temperaturas del sustrato de 250 ºC, 300 ºC y 330 ºC y el convencional a 400 ºC y a una velocidad de calentamiento de 2 ºC/min. El comportamiento anticorrosivo se estudió mediante las técnicas de espectroscopía de impedancia electroquímica (EIS) y Tafel. Se observó que el proceso de sinterización vía plasma, mejora la resistencia a la corrosión con respecto al método convencional.Palabras Clave: sol-gel; corrosión; plasma; EIS;Tafel Abstract This work shows a comparative electrochemical study among the anticorrosive properties of coatings SiO2 TiO2 ZrO2 obtained by the method sol-gel and plasma sintering process and conventional. The coatings conformed to starting from Si(OC2 H5 )4 , Ti(OBu)4 and Zr(OC3 H7 )4 . These were deposited on steel substrate 304 by means of dip-coating in mono-layer and bi-layer. The plasma sintering process was carried out to temperatures of the substrate of 250 ºC, 300 ºC and 330 ºC and the conventional to 400 ºC and a speed of heating of 2 ºC/min. the anticorrosive behavior was studied by means of the techniques of electrochemical impedance spectroscopy (EIS) and Tafel. It was observed that the plasma sintering process, it improves the resistance to the corrosive attack to in regard to the conventional method.Keywords: sol-gel, corrosion, plasma, EIS, Tafel


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 783 ◽  
Author(s):  
Muna Ibrahim ◽  
Karthik Kannan ◽  
Hemalatha Parangusan ◽  
Shady Eldeib ◽  
Omar Shehata ◽  
...  

ZnO-NiO nanocomposite with epoxy coating on mild steel has been fabricated by the sol–gel assisted method. The synthesized sample was used to study corrosion protection. The analysis was performed by electrochemical impedance spectroscopy in 3.5% NaCl solution. The structural and morphological characterization of the metal oxide nanocomposite was carried out using XRD and SEM with Energy Dispersive Absorption X-ray (EDAX) analysis. XRD reveals the ZnO-NiO (hexagonal and cubic) structure with an average ZnO-NiO crystallite size of 26 nm. SEM/EDAX analysis of the ZnO-NiO nanocomposite confirms that the chemical composition of the samples consists of: Zn (8.96 ± 0.11 wt.%), Ni (10.53 ± 0.19 wt.%) and O (80.51 ± 3.12 wt.%). Electrochemical Impedance Spectroscopy (EIS) authenticated that the corrosion resistance has improved for the nanocomposites of ZnO-NiO coated along with epoxy on steel in comparison to that of the pure epoxy-coated steel.


ACS Omega ◽  
2018 ◽  
Vol 3 (6) ◽  
pp. 6880-6887
Author(s):  
Joshua Whittam ◽  
Andrew L. Hector ◽  
Christopher Kavanagh ◽  
John R. Owen ◽  
Gillian Reid

2011 ◽  
Vol 418-420 ◽  
pp. 1869-1872
Author(s):  
Maziidah Hamidi ◽  
Syafawati Nadiah Mohamed ◽  
Muhd Zu Azhan Yahya

The Li-ion fast conductor, Li1-XAlxTi2-X(PO4)3 (LATP) compound were synthesized by a sol-gel method. Effects due to the addition of Al3+ into Li1-XAlxTi2-X(PO4)3 (x=0.0-0.5) glass-ceramics system have been investigated using electrochemical impedance spectroscopy (EIS), X-ray differential analysis (XRD) and permittivity studies. The crystalline phase of the samples obtained confirming that they had a characteristic of glass-ceramics structure.


2016 ◽  
Vol 869 ◽  
pp. 680-684
Author(s):  
Ana Paula Jardim Roquete ◽  
Valeska Rodrigues Roque ◽  
Laura Martins Fonseca ◽  
Lorena Aparecida Nunes Viana ◽  
Angélica Karine Henkes ◽  
...  

The capacitive properties on aluminum alloy coated by sol-gel are evaluated in this work. The samples were anodized in a H2SO4 solution for three different times (15, 20 and 30 min) and subsequently covered by a sol-gel. The capacitance of the samples was evaluated by electrochemical impedance spectroscopy (EIS). Firstly the capacitance of the anodizing samples was evaluated. The second condition was the evaluation of the anodized samples coated by sol-gel. The better capacitance results obtained in the first condition was observed in the blank samples and by the 15 min anodized samples. After the sol-gel deposition, the influence of coating on the overall capacitance was observed. Their stability during the immersion time of the evaluation was observed as well.


2017 ◽  
Vol 64 (4) ◽  
pp. 365-370 ◽  
Author(s):  
Sebahattin Kirtay

Purpose The purpose of this paper is to investigate the corrosion resistance of SiO2-Al2O3 coating on mild steel. Design/methodology/approach SiO2-Al2O3 was coated using sol-gel method, and electrochemical measurements were applied to assess the performance of the coated steel. Findings The main conclusion is that SiO2-Al2O3-coated specimens acquired a higher corrosion resistance than that of uncoated specimen. icorr values of the coated specimens were between 12 and 14 times smaller than those of uncoated specimen. The coated specimens exhibited a higher Rcor value at electrochemical impedance spectroscopy analysis. The high values of Rcor and low values of CPEdl observed within the SiO2-Al2O3-coated samples imply an improved anti-corrosion capability. Originality/value In this work, there are three points of originality. First, steel specimens were coated with ormosil-based solution by applying sol-gel dip coating method. Second, both SiO2 and Al2O3 coatings were applied simultaneously at a considerably low temperature, i.e. 200 °C. Finally, the performance of the coated materials against wet corrosion was improved significantly.


RSC Advances ◽  
2016 ◽  
Vol 6 (52) ◽  
pp. 46479-46486 ◽  
Author(s):  
Xiaoling Liu ◽  
Yawei Shao ◽  
Mingshun Liu ◽  
Shougang Chen ◽  
Fuhui Wang ◽  
...  

The anti-corrosion properties of the defective zinc phosphate/epoxy coatings under cathodic protection (CP) in a 3.5% NaCl solution were evaluated by localized electrochemical impedance spectroscopy (LEIS) and scanning electrochemical microscopy.


Sign in / Sign up

Export Citation Format

Share Document