scholarly journals Highly Flexible Wind Turbine Blades Utilizing Corrugated Surface Hinges

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 635
Author(s):  
Mogeeb Elrahman Elsheikh

An anthropomorphic wind turbine blade was the suggested design that had a flexure hinge at root, middle, and tip regions. The inter-distances of the flexure hinges follow the Fibonacci sequence and resembled the natural finger through binding. Therefore, the present study designs various corrugated flexure hinges. NACA0012 is chosen as the basic airfoil for designing the corrugated flexure hinges with different geometrical profiles and leading edges. The designs are based on morphing technology and the main geometrical parameters of the corrugation, the pitch distance along the span and the height, are inspired by tubercles of the whale flippers. The study uses the finite element method to define the significant strength characteristics of each design flap-wise, edge-wise, torsional stiffness, and buckling resistance in order to assign the best fit corrugation profile for each region of the blade.

2021 ◽  
pp. 0309524X2110385
Author(s):  
Zhou Wu ◽  
Tao Chen ◽  
Haipeng Wang ◽  
Hongwei Shi ◽  
Mingzhou Li

The transition area of the blade had a large relative thickness of airfoil, which was prone to the flow separation. The vortex generators (VGs) could restrain the flow separation. In this paper, the VGs were installed at the transition area of the WindPACT 1.5 MW wind turbine blades. The numerical simulation method was used to investigate the effects of the VGs on the aerodynamic performance of the blade. The high-energy vortexes were generated at the tail by the VG. It could change the energy distribution and flow characteristics of the airflow in the boundary layer. There were influences by the geometric parameters of the VGs. The VGs could change the aerodynamic performance at the transition area of the blade. A satisfactory result was obtained for reasonable geometrical parameters of the VGs. It also could restrain the flow separation of the blade surface and improve the torque.


2009 ◽  
Vol 129 (5) ◽  
pp. 689-695
Author(s):  
Masayuki Minowa ◽  
Shinichi Sumi ◽  
Masayasu Minami ◽  
Kenji Horii

2021 ◽  
Author(s):  
Aileen G. Bowen Perez ◽  
Giovanni Zucco ◽  
Paul Weaver

Author(s):  
Salete Alves ◽  
Luiz Guilherme Vieira Meira de Souza ◽  
Edália Azevedo de Faria ◽  
Maria Thereza dos Santos Silva ◽  
Ranaildo Silva

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
K. Pugh ◽  
M. M. Stack

AbstractErosion rates of wind turbine blades are not constant, and they depend on many external factors including meteorological differences relating to global weather patterns. In order to track the degradation of the turbine blades, it is important to analyse the distribution and change in weather conditions across the country. This case study addresses rainfall in Western Europe using the UK and Ireland data to create a relationship between the erosion rate of wind turbine blades and rainfall for both countries. In order to match the appropriate erosion data to the meteorological data, 2 months of the annual rainfall were chosen, and the differences were analysed. The month of highest rain, January and month of least rain, May were selected for the study. The two variables were then combined with other data including hailstorm events and locations of wind turbine farms to create a general overview of erosion with relation to wind turbine blades.


Sign in / Sign up

Export Citation Format

Share Document