scholarly journals A Numerical Investigation on the Combined Effects of MoSe2 Interface Layer and Graded Bandgap Absorber in CIGS Thin Film Solar Cells

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 930
Author(s):  
Fazliyana Za’abar ◽  
Yulisa Yusoff ◽  
Hassan Mohamed ◽  
Siti Abdullah ◽  
Ahmad Mahmood Zuhdi ◽  
...  

The influence of Molybdenum diselenide (MoSe2) as an interfacial layer between Cu(In,Ga)Se2 (CIGS) absorber layer and Molybdenum (Mo) back contact in a conventional CIGS thin-film solar cell was investigated numerically using SCAPS-1D (a Solar Cell Capacitance Simulator). Using graded bandgap profile of the absorber layer that consist of both back grading (BG) and front grading (FG), which is defined as double grading (DG), attribution to the variation in Ga content was studied. The key focus of this study is to explore the combinatorial effects of MoSe2 contact layer and Ga grading of the absorber to suppress carrier losses due to back contact recombination and resistance that usually occur in case of standard Mo thin films. Thickness, bandgap energy, electron affinity and carrier concentration of the MoSe2 layer were all varied to determine the best configuration for incorporating into the CIGS solar cell structure. A bandgap grading profile that offers optimum functionality in the proposed configuration with additional MoSe2 layer has also been investigated. From the overall results, CIGS solar cells with thin MoSe2 layer and high acceptor doping concentration have been found to outperform the devices without MoSe2 layer, with an increase in efficiency from 20.19% to 23.30%. The introduction of bandgap grading in the front and back interfaces of the absorber layer further improves both open-circuit voltage (VOC) and short-circuit current density (JSC), most likely due to the additional quasi-electric field beneficial for carrier collection and reduced back surface and bulk recombination. A maximum power conversion efficiency (PCE) of 28.06%, fill factor (FF) of 81.89%, JSC of 39.45 mA/cm2, and VOC of 0.868 V were achieved by optimizing the properties of MoSe2 layer and bandgap grading configuration of the absorber layer. This study provides an insight into the different possibilities for designing higher efficiency CIGS solar cell structure through the manipulation of naturally formed MoSe2 layer and absorber bandgap engineering that can be experimentally replicated.

2015 ◽  
Vol 137 (6) ◽  
Author(s):  
M. Doriani ◽  
H. Dehdashti Jahromi ◽  
M. H. Sheikhi

A new structure for CuIn1−xGaxSe2 (CIGS) solar cell is investigated. The structure consists of an absorber layer with constant bandgap placed next to the cadmium sulfide (CdS) buffer layer and a graded bandgap absorber layer positioned near the molybdenum (Mo) back contact. This leads to a reduced recombination rate at the back contact and enhances collection of generated carriers by additional induced drift field. The structure provides higher efficiency than previous structures. Optimum value of bandgap, thickness, and doping level of the layers are determined to reach maximum efficiency. Moreover, a trap density model is interpolated and applied in the simulations.


2012 ◽  
Vol 725 ◽  
pp. 175-178 ◽  
Author(s):  
Yasuhiro Abe ◽  
Takashi Minemoto ◽  
Hideyuki Takakura

We focused on the reduction of the crack formation in the transfer of the Cu(In,Ga)Se2 (CIGS) thin film solar cell structure. We found that the crack formation was reduced by increasing the In2O3:Sn thickness. We concluded that the whole thickness of the transferred layers is an important roll in the reduction of the crack formation. Moreover, we proposed the crack occupancy as a quantitative evaluation method of the crack inside the CIGS layer.


2000 ◽  
Vol 61 (2) ◽  
pp. 203-211 ◽  
Author(s):  
Isaiah O Oladeji ◽  
Lee Chow ◽  
Christos S Ferekides ◽  
Vijay Viswanathan ◽  
Zhiyong Zhao

2020 ◽  
Vol 20 (6) ◽  
pp. 3939-3942
Author(s):  
Nikhil Deep Gupta

The paper discusses and compares the Lambertian limits for light trapping (LT) in GaAs active layer based thin film solar cells as described by different mathematical theories and expressions. The Lambertian limits for thin film GaAs solar cell provide the maximum efficiency that can be achieved through LT structures and also indicate the advantage that these structure can provide for the design of GaAs thin film solar cell structure. The purpose to discuss difference Lambertian limit expressions is to understand and predict, which limiting benchmark value is more suited for nano LT structures based GaAs active material solar cells, considering GaAs material properties. The paper also compares these calculated limiting values with different nano LT structures including photonic crystal structures based designs proposed by the author. The aim is to check how much close a particular proposed structure is to the Lambertian values, so that we can predict that which is more suitable design to get best efficiency out of the single junction GaAs material based structure. The paper discussed the three Lambertian theories including that of Yablonovitch, Green and Schuster.


1996 ◽  
Vol 426 ◽  
Author(s):  
Martin A. Green ◽  
Alistair B. Sproul ◽  
Tom Puzzer ◽  
Guang Fu Zheng ◽  
Paul Basore ◽  
...  

AbstractA new silicon parallel multilayer solar cell structure has recently been reported which can give high solar cell energy conversion efficiency from low quality silicon material. Advantages of this structure are described as is recent characterization work which compares the properties of grain boundaries in experimental devices to those predicted by earlier calculations.


Sign in / Sign up

Export Citation Format

Share Document