electrostatic doping
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 40)

H-INDEX

16
(FIVE YEARS 5)

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1540
Author(s):  
Sorin Cristoloveanu ◽  
Joris Lacord ◽  
Sébastien Martinie ◽  
Carlos Navarro ◽  
Francisco Gamiz ◽  
...  

This paper reviews the recently-developed class of band-modulation devices, born from the recent progress in fully-depleted silicon-on-insulator (FD-SOI) and other ultrathin-body technologies, which have enabled the concept of gate-controlled electrostatic doping. In a lateral PIN diode, two additional gates can construct a reconfigurable PNPN structure with unrivalled sharp-switching capability. We describe the implementation, operation, and various applications of these band-modulation devices. Physical and compact models are presented to explain the output and transfer characteristics in both steady-state and transient modes. Not only can band-modulation devices be used for quasi-vertical current switching, but they also show promise for compact capacitorless memories, electrostatic discharge (ESD) protection, sensing, and reconfigurable circuits, while retaining full compatibility with modern silicon processing and standard room-temperature low-voltage operation.


Author(s):  
Hui Xu ◽  
Xiaojing Wang ◽  
Zhiquan Chen ◽  
Xuelei Li ◽  
Longhui He ◽  
...  

Abstract A very simple optical tunable device, which can realize multiple functions of frequency selection, reflection and slow light, is presented at the investigation. The proposed device is constructed by a periodic grating-like structure. There are two dielectrics (graphene and silicon) in a period of the equivalent grating. The incident light will strongly resonate with the graphene of electrostatic doping, forming an evanescent wave propagating along the surface of graphene, and this phenomenon is the surface plasmon. Under constructive interference of the polaritons, a unique plasmonic induced transparency phenomenon will be achieved. The induced transparency produced by this device can be well theoretically fitted by the bright and dark mode of optical equivalent cavity which can be called coupled mode theory (CMT). This theory can well analyze the influence of various modes and various losses between the function of this device. The device can use gate voltages for electrostatic doping in order to change the graphene carrier concentration and tune the optical performance of the device. Moreover, the length of the device in y-direction is will be much larger than the length of single cycle, providing some basis for realizing the fast tunable function and laying a foundation for the integration. Through a simulation and calculation, we can find that the group index and group delay of this device are as high as 515 and 0.257 picoseconds (ps) respectively, so it can provide a good construction idea for the slow light device. The proposed grating-like metamaterial structure can provide certain simulation and theoretical help for the optical tunable reflectors, absorbers, and slow light devices.


2021 ◽  
Author(s):  
Qihua Xiong ◽  
Andres Granados del Aguila ◽  
Yi Wong ◽  
Xue Liu ◽  
Antonio Fieramosca ◽  
...  

Abstract Condensation of a dilute Bose gas of excitons (coupled electron-hole pairs) in a direct bandgap semiconductor was first theoretically predicted in 19681. This exotic state of matter is expected to exhibit spectacular non-linear properties, such as superradiance and superfluidity. However, direct experimental observation of condensation of optically active excitons in conventional semiconductors has been hindered by their short lifetimes and weak collective excitonic interactions. Here, we have experimentally realized the condensation of short-lived excitons in a direct-bandgap, atomically-thin MoS2 semiconductor. The signature is the anomalous transport of the fast-expanding exciton density, originating from a thermalized dilute gas generated under the laser spot. Below the critical temperature Tc~150 K, the exciton liquid propagates over ultra-long distances (at least 60 micrometers) with record speed in a solid-state system of 1.8*10^7 m/s (~6% the speed of light), fuelled by the unconventionally strong repulsions among excitons. The condensation is controlled by many-body interactions in the gas mixture of excitons (bosons) and free-carriers (fermions) via an electrical backgate. Our results demonstrate electrostatic doping as a simple approach for the investigation of correlated states of matter at high-temperatures, excitonic circuitry and spin-valley Hall devices mediated by exciton superfluids in semiconducting monolayers.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2420
Author(s):  
Xunjun He ◽  
Chenguang Sun ◽  
Yue Wang ◽  
Guangjun Lu ◽  
Jiuxing Jiang ◽  
...  

Currently, metasurfaces (MSs) integrating with different active materials have been widely explored to actively manipulate the resonance intensity of multi-band electromagnetic induced transparency (EIT) windows. Unfortunately, these hybrid MSs can only realize the global control of multi-EIT windows rather than selective control. Here, a graphene-functionalized complementary terahertz MS, composed of a dipole slot and two graphene-integrated quadrupole slots with different sizes, is proposed to execute selective and active control of dual-band electromagnetic induced reflection (EIR) windows. In this structure, dual-band EIR windows arise from the destructive interference caused by the near field coupling between the bright dipole slot and dark quadrupole slot. By embedding graphene ribbons beneath two quadrupole slots, the resonance intensity of two windows can be selectively and actively modulated by adjusting Fermi energy of the corresponding graphene ribbons via electrostatic doping. The theoretical model and field distributions demonstrate that the active tuning behavior can be ascribed to the change in the damper factor of the corresponding dark mode. In addition, the active control of the group delay is further investigated to develop compact slow light devices. Therefore, the selective and active control scheme introduced here can offer new opportunities and platforms for designing multifunctional terahertz devices.


2021 ◽  
Vol 130 (10) ◽  
pp. 105302
Author(s):  
Tong Su ◽  
Junwei Huang ◽  
Qian Wang ◽  
Xi Zhang ◽  
Ling Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document