scholarly journals Characterization of Pure Rutile Titania Nanoparticle Prepared by Feasible Method for Coatings and Visible Light-Driven Dye Removal Application

Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1150
Author(s):  
Jothi Ramalingam Rajabathar ◽  
Hamad A. Al-Lohedan ◽  
Selvaraj Arokiyaraj ◽  
Zuheir A. Issa ◽  
Chandra Sekhar Dash ◽  
...  

The pure phase of rutile titanium dioxide or titania (R-TiO2) was prepared by means of a strong acidic sol–gel process followed by treatment using a hydrothermal method. The as-prepared titania nanoparticles existed purely in the rutile phase instead of the mixed anatase phase of the respective titania (R-TiO2). The optimized reaction condition and precursor usage were the critical parameters for the formation of the particle size and uniform crystallinity of the rutile phase of TiO2 nanoparticle fabrication. XRD (X-ray diffraction), and Raman spectroscopic techniques were utilized to confirm the formation of the pure rutile phase of titania. SEM (scanning electron microscope) and TEM (Transmission electron microscope) images showed the cauliflower-like morphology of the as-prepared R-TiO2; reduced particle sizes of below 5 nm were observed and confirmed through high resolution images. The catalytic activity of the as-prepared R-TiO2 was tested under visible light irradiation for methylene blue dye degradation reactions. Dye degradation occurred very effectively, even at higher concentrations of methylene blue (MB), at reduced time intervals from 5 to 3 h of reaction time. The as-prepared rutile phase of pure titania nanoparticles was applied in a catalysis application for the purpose of inducing various types of organic dye degradation or catalytic transformation in the presence of visible light.

2012 ◽  
Vol 584 ◽  
pp. 396-400 ◽  
Author(s):  
Aravind Naga Revuru ◽  
Nagarajan Padmavathy ◽  
Angappan Sheela ◽  
Swamiappan Sasikumar

The major cause of surface and ground water contamination is due to effluent from dyeing industries. The discharged effluent chemicals inhibit light penetration into water bodies and some are considered to be carcinogenic. In this study, the photocatalytic decomposition of the synthetic dye, methylene blue was investigated in the presence of activated TiO2. The TiO2 sample was characterized by using XRD to analyze the presence of anatase and rutile phases. The dye degradation was monitored as a change in absorbance by UV-Visible spectrophotometer. The contributing factors towards dye degradation include both the dye concentration as well as the quantity of TiO2 used. Different quantities of TiO2 in anatase phase was taken and activated under UV radiation for 15 min. and subsequently coated on to TLC plates using 5% polyvinyl alcohol as a binding agent. This photocatalytic plate was kept in the methylene blue dye solution and exposed to sunlight. The results shows that 57% of the 30ppm methylene blue dye gets degraded within 75min., when exposed to UV activated TiO2 in presence of natural sunlight.


2018 ◽  
Vol 47 (12) ◽  
pp. 4251-4258 ◽  
Author(s):  
Ming Zhang ◽  
Liwen Wang ◽  
Tianyu Zeng ◽  
Qigao Shang ◽  
Hong Zhou ◽  
...  

Two 3D coordination polymers, bridged by 4,4′-bipyridine, were readily synthesized and fully characterized. As efficient photocatalysts in dye degradation under visible light, the mechanism and stability were studied.


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 880 ◽  
Author(s):  
Feidias Bairamis ◽  
Ioannis Konstantinou ◽  
Dimitrios Petrakis ◽  
Tiverios Vaimakis

TiO2/g-C3N4 (GNT) fibers with 1%, 2.5% and 5% (wt%) ratios have been synthesized via one-step electrospinning using polyvinylpyrrolidone (PVP) polymer. Results showed mesoporous fibrous catalysts consisted of anatase (80.0–85.1%) and rutile phase (14.9–20.0%), with diameter between 200–300 nm and band gap lower than 3.0 eV confirming the absorption shift to visible-light region. The formation of •OH radicals and methylene blue dye degradation increases as the g-C3N4 doping percent also increases, following the trend ΤiO2 < GNT1% ≈ GNT2.5% < GNT5%. A z-scheme mechanism is attributed to the photocatalytic performance confirming the potential for green chemistry and environmental technology applications.


2020 ◽  
Vol 16 ◽  
Author(s):  
Priyanka Karathan Parakkandy ◽  
Kagalagodu Manjunthiah Balakrishna ◽  
Thomas Varghese

Background: The organic effluents from industry remain one of the reasons for water contamination. By natural degradation process, it is difficult to remove this; hence finding an effective solution for this is inevitable. TiO2-based materials have received enormous attention in the area of semiconductor photocatalysis, particularly for the degradation of organic dyes. This work emphasize on the degradation of two industrial dyes methylene blue and rhodamine blue by visible light irradiation of TiO2 based nanoparticles. Methods: In the present study, pristine and La3+ and Ce3+ doped nanotitania were synthesized by sol-gel method. The samples under investigation were characterized using X-ray diffraction, Transmission electron microscopy to study the variation of crystallite size and UV-Visible absorption spectroscopy. Results: The increase in crystallite size for the pristine samples calcined at various temperatures confirms the effect of calcination temperature. Also, the doping reduced the size of the synthesized nanotitania. Visible light extended absorption spectra have been observed for the calcined samples and Ce3+ doped nanotitania. The La3+ doped sample showed a blue shift in the absorption confirming quantum confinement. The photocatalytic activity in the context of degradation of certain industrial dyes such as methylene blue and rhodamine blue has been investigated for the samples. Conclusion: The studies found that nanotitania consisting of mixed anatase-rutile phase exhibits higher degradation efficiency than that of pure anatase or rutile samples. Besides, photocatalytic dye degradation has been significantly improved for Ce3+ doped nanotitania compared to the pristine sample.


2016 ◽  
Vol 42 (14) ◽  
pp. 15235-15241 ◽  
Author(s):  
Lu Gan ◽  
Lijie Xu ◽  
Songmin Shang ◽  
Xiaoyan Zhou ◽  
Liang Meng

2020 ◽  
Vol 16 ◽  
Author(s):  
Radhakrishna S. Sutar ◽  
Rani P. Barkul ◽  
Meghshyam K. Patil

Background: Different photocatalysts such as TiO2, ZnO, WO3 have been used for degradation of organic pollutants. However, these materials having some limitations, which has been affected the catalytic efficiency in the various transformations. The composites of these materials with other oxide can produce better results by tuning structural as well as optoelectrical properties. The composite of TiO2 with ZrO2 has attracted attention due to their use in different areas as ZrO2 and TiO2 have similar physicochemical features. Methods: This research contain the preparation of ZrO2-TiO2 nanocomposites by hydrothermal method and analysis of photocatalytic activity for degradation of methylene blue and mixture of dyes under visible light irradiation. Results: Physicochemical characterization of ZrO2-TiO2 nanocomposites has been studied by using different techniques. Prepared catalysts has shown anatase phase of TiO2 and tetragonal phase of ZrO2. XRD, FESEM and HRTEM have supported the nanocrystalline nature of the composites. The photocatalytic activity of composites and bare TiO2 samples were demonstrated for the degradation of methylene blue dye. Enhanced activity has been shown by composite having Ti:Zr 3:1 molar proportion i.e., Ti3Zr. Effect of concentration of methylene blue, pH of solution, catalyst loading has been studied by using Ti3Zr. Also, degradation of mixture of three dyes namely methylene blue, rhodamine B and methyl orange has been studied. Conclusion: In summary, prepared zro2-tio2 composites found to be nanocrystalline and visible light active. these catalysts has shown activity for photocatalytic degradation of methylene blue and mixture of dyes.


In this study, TiO2 nanoparticles modified with MoS2 were synthesized using the low temperature hydrolysis method. Samples of pure TiO2 and samples of MoS2 /TiO2 were prepared using different amounts of MoS2 (1.0% and 10.0% by weight). The samples were annealed at 500°C and 700°C and characterised by ICP-AES, XRD, Raman, FT-IR, TG, XPS and DR-UV-Vis spectroscopy. The results suggest that the MoS2 added during synthesis is a satisfactory source of Mo to produce doping of the TiO2 structure. In addition, the transformation of anatase phase to rutile is delayed when the concentration of Mo incorporated into the structure increases. Finally, the effectiveness of the synthesized MoS2 /TiO2 samplesused as photocatalyst for the photodegradation of methylene blue dye under visible light irradiation was investigated. TiO2 doped with MoS2 was shown to improve the degradation of methylene blue under visible light. There was found to be an optimal temperature and level of doping to achieve improved photocatalytic activity, in our case 10.0% MoS2 /TiO2 at 700°C.


2018 ◽  
Vol 3 (47) ◽  
pp. 13419-13426 ◽  
Author(s):  
Kandasamy Bhuvaneswari ◽  
Govindasamy Palanisamy ◽  
Thangavelu Pazhanivel ◽  
Ganapathi Bharathi ◽  
Devaraj Nataraj

Sign in / Sign up

Export Citation Format

Share Document