scholarly journals Dependency of Contact Angles on Three-Phase Contact Line: A Review

2021 ◽  
Vol 5 (1) ◽  
pp. 8
Author(s):  
H. Yildirim Erbil

The wetted area of a sessile droplet on a practical substrate is limited by the three-phase contact line and characterized by contact angle, contact radius and drop height. Although, contact angles of droplets have been studied for more than two hundred years, there are still some unanswered questions. In the last two decades, it was experimentally proven that the advancing and receding contact angles, and the contact angle hysteresis of rough and chemically heterogeneous surfaces, are determined by interactions of the liquid and the solid at the three-phase contact line alone, and the interfacial area within the contact perimeter is irrelevant. However, confusion and misunderstanding still exist in this field regarding the relationship between contact angle and surface roughness and chemical heterogeneity. An extensive review was published on the debate for the dependence of apparent contact angles on drop contact area or the three-phase contact line in 2014. Following this old review, several new articles were published on the same subject. This article presents a review of the novel articles (mostly published after 2014 to present) on the dependency of contact angles on the three-phase contact line, after a short summary is given for this long-lasting debate. Recently, some improvements have been made; for example, a relationship of the apparent contact angle with the properties of the three-phase line was obtained by replacing the solid–vapor interfacial tension term, γSV, with a string tension term containing the edge energy, γSLV, and curvature of the triple contact line, km, terms. In addition, a novel Gibbsian thermodynamics composite system was developed for a liquid drop resting on a heterogeneous multiphase and also on a homogeneous rough solid substrate at equilibrium conditions, and this approach led to the same conclusions given above. Moreover, some publications on the line energy concept along the three-phase contact line, and on the “modified” Cassie equations were also examined in this review.

MRS Bulletin ◽  
2008 ◽  
Vol 33 (8) ◽  
pp. 747-751 ◽  
Author(s):  
Lichao Gao ◽  
Alexander Y. Fadeev ◽  
Thomas J. McCarthy

AbstractThe wettability of several superhydrophobic surfaces that were prepared recently by simple, mostly single-step methods is described and compared with the wettability of surfaces that are less hydrophobic. We explain why two length scales of topography can be important for controlling the hydrophobicity of some surfaces (the lotus effect). Contact-angle hysteresis (difference between the advancing, θA, and receding, θR, contact angles) is discussed and explained, particularly with regard to its contribution to water repellency. Perfect hydrophobicity (θA/θR = 180°/180°) and a method for distinguishing perfectly hydrophobic surfaces from those that are almost perfectly hydrophobic are described and discussed. The Wenzel and Cassie theories, both of which involve analysis of interfacial (solid/liquid) areas and not contact lines, are criticized. Each of these related topics is addressed from the perspective of the three-phase (solid/liquid/vapor) contact line and its dynamics. The energy barriers for movement of the three-phase contact line from one metastable state to another control contact-angle hysteresis and, thus, water repellency.


Author(s):  
Neeharika Anantharaju ◽  
Mahesh Panchagnula ◽  
Wayne Kimsey ◽  
Sudhakar Neti ◽  
Svetlana Tatic-Lucic

The wettability of silicon surface hydrophobized using silanization reagents was studied. The advancing and receding contact angles were measured with the captive needle approach. In this approach, a drop under study was held on the hydrophobized surface with a fine needle immersed in it. The asymptotic advancing and receding angles were obtained by incrementally increasing the volume added and removed, respectively, until no change in angles was observed. The values were compared with the previously published results. Further, the wetting behavior of water droplets on periodically structured hydrophobic surfaces was investigated. The surfaces were prepared with the wet etching process and contain posts and holes of different sizes and void fractions. The surface geometry brought up a scope to study the Wenzel (filling of surface grooves) and Cassie (non filling of the surface grooves) theories and effects of surface geometry and roughness on the contact angle. Experimental data point to an anomalous behavior where the data does not obey either Wenzel or Cassie type phenomenology. This behavior is explained by an understanding of the contact line topography. The effect of contact line topography on the contact angle was thus parametrically studied. It was also inferred that, the contact angle increased with the increase in void fraction. The observations may serve as guidelines in designing surfaces with the desired wetting behavior.


Author(s):  
Fangjun Hong ◽  
Ping Cheng ◽  
Zhen Sun ◽  
Huiying Wu

In this paper, the electrowetting dynamics of a droplet on a dielectric surface was investigated numerically by a mathematical model including dynamic contact angle and contact angle hysteresis. The fluid flow is described by laminar N-S equation, the free surface of the droplet is modeled by the Volume of Fluid (VOF) method, and the electrowetting force is incorporated by exerting an electrical force on the cells at the contact line. The Kilster’s model that can deal with both receding and advancing contact angle is adopted. Numerical results indicate that there is overshooting and oscillation of contact radius in droplet spreading process before it ceases the movement when the excitation voltage is high; while the overshooting is not observed for low voltage. The explanation for the contact line overshooting and some special characteristics of variation of contact radius with time were also conducted.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Stefan Batzdorf ◽  
Tatiana Gambaryan-Roisman ◽  
Peter Stephan

The heat and mass transfer close to the apparent three-phase contact line is of tremendous importance in many evaporation processes. Despite the extremely small dimensions of this region referred to as the microregion compared to the macroscopic length scale of a boiling process, a considerable fraction of heat can be transferred in this region. Due to its small characteristic length scale, physical phenomena are relevant in the microregion, which are completely negligible on the macroscopic scale, including the action of adhesion forces and the interfacial heat resistance. In the past, models have been developed taking these effects into account. However, so far these models are based on the assumption of one-dimensional (1D) heat conduction, and the flow within the thin liquid film forming the microregion near the apparent three-phase contact line is modeled utilizing the lubrication approximation. Hence, the application of existing models is restricted to small apparent contact angles. Moreover, the effects of surface structures or roughness are not included in these lubrication models. To overcome these limitations, a direct numerical simulation (DNS) of the liquid flow and heat transfer within the microregion is presented in this paper. The DNS is employed for validation of the existing lubrication model and for investigation of the influence of surface nanostructures on the apparent contact angle and in particular on the heat transfer within the microregion.


Langmuir ◽  
2007 ◽  
Vol 23 (23) ◽  
pp. 11673-11676 ◽  
Author(s):  
Neeharika Anantharaju ◽  
Mahesh V. Panchagnula ◽  
Srikanth Vedantam ◽  
Sudhakar Neti ◽  
Svetlana Tatic-Lucic

2018 ◽  
Vol 145 ◽  
pp. 03006
Author(s):  
Stanimir Iliev ◽  
Nina Pesheva ◽  
Pavel Iliev

In this work we present preliminary results from our numerical study of the shapes of a liquid meniscus in contact with doubly sinusoidal rough surfaces in Wenzel’s wetting regime. Using the full capillary model we obtain the advancing and the receding equilibrium meniscus shapes for a broad interval of surface roughness factors. The contact angle hysteresis is obtained when the three-phase contact line is located on one row (block case) or several rows (kink case) of physical defects. We find that depending on the mutual disposition of the contact line and the lattice of periodic defects, different stick-slip behaviors of the contact line depinning mechanism appear, leading to different values of the contact angle hysteresis.


Author(s):  
Feifei Qin ◽  
Jianlin Zhao ◽  
Qinjun Kang ◽  
Dominique Derome ◽  
Jan Carmeliet

AbstractDrying of porous media is governed by a combination of evaporation and movement of the liquid phase within the porous structure. Contact angle hysteresis induced by surface roughness is shown to influence multi-phase flows, such as contact line motion of droplet, phase distribution during drainage and coffee ring formed after droplet drying in constant contact radius mode. However, the influence of contact angle hysteresis on liquid drying in porous media is still an unanswered question. Lattice Boltzmann model (LBM) is an advanced numerical approach increasingly used to study phase change problems including drying. In this paper, based on a geometric formulation scheme to prescribe contact angle, we implement a contact angle hysteresis model within the framework of a two-phase pseudopotential LBM. The capability and accuracy of prescribing and automatically measuring contact angles over a large range are tested and validated by simulating droplets sitting on flat and curved surfaces. Afterward, the proposed contact angle hysteresis model is validated by modeling droplet drying on flat and curved surfaces. Then, drying of two connected capillary tubes is studied, considering the influence of different contact angle hysteresis ranges on drying dynamics. Finally, the model is applied to study drying of a dual-porosity porous medium, where phase distribution and drying rate are compared with and without contact angle hysteresis. The proposed model is shown to be capable of dealing with different contact angle hysteresis ranges accurately and of capturing the physical mechanisms during drying in different porous media including flat and curved geometries.


Sign in / Sign up

Export Citation Format

Share Document