scholarly journals Hybrid Mamdani Fuzzy Rules and Convolutional Neural Networks for Analysis and Identification of Animal Images

Computation ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 35
Author(s):  
Hind R. Mohammed ◽  
Zahir M. Hussain

Accurate, fast, and automatic detection and classification of animal images is challenging, but it is much needed for many real-life applications. This paper presents a hybrid model of Mamdani Type-2 fuzzy rules and convolutional neural networks (CNNs) applied to identify and distinguish various animals using different datasets consisting of about 27,307 images. The proposed system utilizes fuzzy rules to detect the image and then apply the CNN model for the object’s predicate category. The CNN model was trained and tested based on more than 21,846 pictures of animals. The experiments’ results of the proposed method offered high speed and efficiency, which could be a prominent aspect in designing image-processing systems based on Type 2 fuzzy rules characterization for identifying fixed and moving images. The proposed fuzzy method obtained an accuracy rate for identifying and recognizing moving objects of 98% and a mean square error of 0.1183464 less than other studies. It also achieved a very high rate of correctly predicting malicious objects equal to recall = 0.98121 and a precision rate of 1. The test’s accuracy was evaluated using the F1 Score, which obtained a high percentage of 0.99052.

2019 ◽  
Author(s):  
Sushrut Thorat

A mediolateral gradation in neural responses for images spanning animals to artificial objects is observed in the ventral temporal cortex (VTC). Which information streams drive this organisation is an ongoing debate. Recently, in Proklova et al. (2016), the visual shape and category (“animacy”) dimensions in a set of stimuli were dissociated using a behavioural measure of visual feature information. fMRI responses revealed a neural cluster (extra-visual animacy cluster - xVAC) which encoded category information unexplained by visual feature information, suggesting extra-visual contributions to the organisation in the ventral visual stream. We reassess these findings using Convolutional Neural Networks (CNNs) as models for the ventral visual stream. The visual features developed in the CNN layers can categorise the shape-matched stimuli from Proklova et al. (2016) in contrast to the behavioural measures used in the study. The category organisations in xVAC and VTC are explained to a large degree by the CNN visual feature differences, casting doubt over the suggestion that visual feature differences cannot account for the animacy organisation. To inform the debate further, we designed a set of stimuli with animal images to dissociate the animacy organisation driven by the CNN visual features from the degree of familiarity and agency (thoughtfulness and feelings). Preliminary results from a new fMRI experiment designed to understand the contribution of these non-visual features are presented.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3556 ◽  
Author(s):  
Husein Perez ◽  
Joseph H. M. Tah ◽  
Amir Mosavi

Clients are increasingly looking for fast and effective means to quickly and frequently survey and communicate the condition of their buildings so that essential repairs and maintenance work can be done in a proactive and timely manner before it becomes too dangerous and expensive. Traditional methods for this type of work commonly comprise of engaging building surveyors to undertake a condition assessment which involves a lengthy site inspection to produce a systematic recording of the physical condition of the building elements, including cost estimates of immediate and projected long-term costs of renewal, repair and maintenance of the building. Current asset condition assessment procedures are extensively time consuming, laborious, and expensive and pose health and safety threats to surveyors, particularly at height and roof levels which are difficult to access. This paper aims at evaluating the application of convolutional neural networks (CNN) towards an automated detection and localisation of key building defects, e.g., mould, deterioration, and stain, from images. The proposed model is based on pre-trained CNN classifier of VGG-16 (later compaired with ResNet-50, and Inception models), with class activation mapping (CAM) for object localisation. The challenges and limitations of the model in real-life applications have been identified. The proposed model has proven to be robust and able to accurately detect and localise building defects. The approach is being developed with the potential to scale-up and further advance to support automated detection of defects and deterioration of buildings in real-time using mobile devices and drones.


Author(s):  
Sandeep Chandra Bollepalli ◽  
Rahul K. Sevakula ◽  
Wan‐Tai M. Au‐Yeung ◽  
Mohamad B. Kassab ◽  
Faisal M. Merchant ◽  
...  

Background Accurate detection of arrhythmic events in the intensive care units (ICU) is of paramount significance in providing timely care. However, traditional ICU monitors generate a high rate of false alarms causing alarm fatigue. In this work, we develop an algorithm to improve life threatening arrhythmia detection in the ICUs using a deep learning approach. Methods and Results This study involves a total of 953 independent life‐threatening arrhythmia alarms generated from the ICU bedside monitors of 410 patients. Specifically, we used the ECG (4 channels), arterial blood pressure, and photoplethysmograph signals to accurately detect the onset and offset of various arrhythmias, without prior knowledge of the alarm type. We used a hybrid convolutional neural network based classifier that fuses traditional handcrafted features with features automatically learned using convolutional neural networks. Further, the proposed architecture remains flexible to be adapted to various arrhythmic conditions as well as multiple physiological signals. Our hybrid‐ convolutional neural network approach achieved superior performance compared with methods which only used convolutional neural network. We evaluated our algorithm using 5‐fold cross‐validation for 5 times and obtained an accuracy of 87.5%±0.5%, and a score of 81%±0.9%. Independent evaluation of our algorithm on the publicly available PhysioNet 2015 Challenge database resulted in overall classification accuracy and score of 93.9% and 84.3%, respectively, indicating its efficacy and generalizability. Conclusions Our method accurately detects multiple arrhythmic conditions. Suitable translation of our algorithm may significantly improve the quality of care in ICUs by reducing the burden of false alarms.


Author(s):  
Pham Van Hai ◽  
Samson Eloanyi Amaechi

Conventional methods used in brain tumors detection, diagnosis, and classification such as magnetic resonance imaging and computed tomography scanning technologies are unbridged in their results. This paper presents a proposed model combination, convolutional neural networks with fuzzy rules in the detection and classification of medical imaging such as healthy brain cell and tumors brain cells. This model contributes fully on the automatic classification and detection medical imaging such as brain tumors, heart diseases, breast cancers, HIV and FLU. The experimental result of the proposed model shows overall accuracy of 97.6%, which indicates that the proposed method achieves improved performance than the other current methods in the literature such as [classification of tumors in human brain MRI using wavelet and support vector machine 94.7%, and deep convolutional neural networks with transfer learning for automated brain image classification 95.0%], uses in the detection, diagnosis, and classification of medical imaging decision supports.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 562
Author(s):  
Marcin Kociołek ◽  
Michał Kozłowski ◽  
Antonio Cardone

The perceived texture directionality is an important, not fully explored image characteristic. In many applications texture directionality detection is of fundamental importance. Several approaches have been proposed, such as the fast Fourier-based method. We recently proposed a method based on the interpolated grey-level co-occurrence matrix (iGLCM), robust to image blur and noise but slower than the Fourier-based method. Here we test the applicability of convolutional neural networks (CNNs) to texture directionality detection. To obtain the large amount of training data required, we built a training dataset consisting of synthetic textures with known directionality and varying perturbation levels. Subsequently, we defined and tested shallow and deep CNN architectures. We present the test results focusing on the CNN architectures and their robustness with respect to image perturbations. We identify the best performing CNN architecture, and compare it with the iGLCM, the Fourier and the local gradient orientation methods. We find that the accuracy of CNN is lower, yet comparable to the iGLCM, and it outperforms the other two methods. As expected, the CNN method shows the highest computing speed. Finally, we demonstrate the best performing CNN on real-life images. Visual analysis suggests that the learned patterns generalize to real-life image data. Hence, CNNs represent a promising approach for texture directionality detection, warranting further investigation.


Sign in / Sign up

Export Citation Format

Share Document