scholarly journals A Class of Copula-Based Bivariate Poisson Time Series Models with Applications

Computation ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 108
Author(s):  
Mohammed Alqawba ◽  
Dimuthu Fernando ◽  
Norou Diawara

A class of bivariate integer-valued time series models was constructed via copula theory. Each series follows a Markov chain with the serial dependence captured using copula-based transition probabilities from the Poisson and the zero-inflated Poisson (ZIP) margins. The copula theory was also used again to capture the dependence between the two series using either the bivariate Gaussian or “t-copula” functions. Such a method provides a flexible dependence structure that allows for positive and negative correlation, as well. In addition, the use of a copula permits applying different margins with a complicated structure such as the ZIP distribution. Likelihood-based inference was used to estimate the models’ parameters with the bivariate integrals of the Gaussian or t-copula functions being evaluated using standard randomized Monte Carlo methods. To evaluate the proposed class of models, a comprehensive simulated study was conducted. Then, two sets of real-life examples were analyzed assuming the Poisson and the ZIP marginals, respectively. The results showed the superiority of the proposed class of models.

2021 ◽  
Vol 17 (4) ◽  
pp. 306-320
Author(s):  
Rahmah Mohd Lokoman ◽  
Fadhilah Yusof ◽  
Nor Eliza Alias ◽  
Zulkifli Yusop

Copula model has applied in various hydrologic studies, however, most analyses conducted does not considering the non-stationary conditions that may exist in the time series. To investigate the dependence structure between two rainfall stations at Johor Bahru, two methods have been applied. The first method considers the non-stationary condition that exists in the data, while the second method assumes stationarity in the time series data.  Through goodness-off-fit (GOF) and simulation tests, performance of both methods are compared in this study. The results obtained in this study highlight the importance of considering non-stationarity conditions in the hydrological data.


2000 ◽  
Vol 4 (4) ◽  
pp. 467-486 ◽  
Author(s):  
Eric Ghysels

We present a class of stochastic regime-switching models. The time-series models may have periodic transition probabilities and the drifts may be seasonal. In the latter case, the model exhibits seasonal dummy variation that may change with the regime. The processes entail nontrivial interactions between so-called business and seasonal cycles. We discuss the stochastic properties as well as their relationship with periodic ARMA processes. Estimation and testing are also discussed in detail.


2016 ◽  
Vol 33 (2) ◽  
pp. 292-330 ◽  
Author(s):  
Betina Berghaus ◽  
Axel Bücher

In recent years, stationary time series models based on copula functions became increasingly popular in econometrics to model nonlinear temporal and cross-sectional dependencies. Within these models, we consider the problem of testing the goodness-of-fit of the parametric form of the underlying copula. Our approach is based on a dependent multiplier bootstrap and it can be applied to any stationary, strongly mixing time series. The method extends recent i.i.d. results by Kojadinovic et al. (2011) and shares the same computational benefits compared to methods based on a parametric bootstrap. The finite-sample performance of our approach is investigated by Monte Carlo experiments for the case of copula-based Markovian time series models.


2011 ◽  
Vol 43 (1) ◽  
pp. 49-76
Author(s):  
Daren B. H. Cline

Suppose that {Xt} is a Markov chain such as the state space model for a threshold GARCH time series. The regularity assumptions for a drift condition approach to establishing the ergodicity of {Xt} typically are ϕ-irreducibility, aperiodicity, and a minorization condition for compact sets. These can be very tedious to verify due to the discontinuous and singular nature of the Markov transition probabilities. We first demonstrate that, for Feller chains, the problem can at least be simplified to focusing on whether the process can reach some neighborhood that satisfies the minorization condition. The results are valid not just for the transition kernels of Markov chains but also for bounded positive kernels, opening the possibility for new ergodic results. More significantly, we show that threshold GARCH time series and related models of interest can often be embedded into Feller chains, allowing us to apply the conclusions above.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Sohail Chand ◽  
Shahid Kamal

Model criticism is an important stage of model building and thus goodness of fit tests provides a set of tools for diagnostic checking of the fitted model. Several tests are suggested in literature for diagnostic checking. These tests use autocorrelation or partial autocorrelation in the residuals to criticize the adequacy of fitted model. The main idea underlying these portmanteau tests is to identify if there is any dependence structure which is yet unexplained by the fitted model. In this paper, we suggest mixed portmanteau tests based on autocorrelation and partial autocorrelation functions of the residuals. We derived the asymptotic distribution of the mixture test and studied its size and power using Monte Carlo simulations.


2010 ◽  
Vol 40 (1) ◽  
pp. 123-150 ◽  
Author(s):  
Hélène Cossette ◽  
Etienne Marceau ◽  
Véronique Maume-Deschamps

AbstractIn this paper, we consider various specifications of the general discrete-time risk model in which a serial dependence structure is introduced between the claim numbers for each period. We consider risk models based on compound distributions assuming several examples of discrete variate time series as specific temporal dependence structures: Poisson MA(1) process, Poisson AR(1) process, Markov Bernoulli process and Markov regime-switching process. In these models, we derive expressions for a function that allow us to find the Lundberg coefficient. Specific cases for which an explicit expression can be found for the Lundberg coefficient are also presented. Numerical examples are provided to illustrate different topics discussed in the paper.


2021 ◽  
Author(s):  
Μαρία Κασελίμη

The analysis of experimental data that have been observed at different points in time leads to new and unique problems in statistical modeling and inference. The obvious correlation introduced by the sampling of adjacent points in time can severely restrict the applicability of the many conventional statistical methods traditionally dependent on the assumption that these adjacent observations are independent andidentically distributed. The systematic approach by which one goes about answering the mathematical and statistical questions posed by these time correlations is commonly referred to as time series analysis (TSA).Time series modeling (TSM) plays a key role in a wide range of real-life problems that have a temporal component. Modern time series problems often pose significant challenges for the existing techniques both in terms of their complexity, structure and size. While traditional methods have focused on parametric models informed by domain expertise, modern machine learning (ML) methods provide a means to learn temporal dynamics in a purely data-driven manner. With the increasing data availability and computing power in recent times, machine learning has become a vital part of the next generation of time series models. Thus, there is both a great need and an exciting opportunity for the machine learning community to develop theory, models and algorithms specifically for the purpose of processing and analyzing time series data.The impact of time series modelling and analysis on scientific applications can be partially documented by analysing problems of various diverse fields in which important time series problems may arise. Modern time series problems are characterized by complexity. Also, since real-world systems often evolve under transient conditions, the signals/time series tend to exhibit various forms of non-stationarity. As far as mathematical models are concerned, they can be categorized in many different ways. They can be linear or non-linear, static or dynamic, continuous distinct in time, deterministic or contemplative. The proper model selection to accurately describe a system depends on the system under study, on whether the operation of the system is a-priory known or not, as well as on the purpose of the implementation. This dissertation presents developments in nonlinear and non-static time series models under a machine learning framework, comparing their performance in real-life application scenarios related to geoinformatics as well as environmental applications.In this dissertation is provided a comparative analysis that evaluates the performance of several deep learning (DL) architectures on a large number of time series datasets of different nature and for different applications. Two main fruitful research fields are discussed here which were strategically chosen in order to address current cross-disciplinary research priorities attracting the interest of geoinformatics communities. The first problem is related to ionospheric Total Electron Content (TEC) modeling which is an important issue in many real-time Global Navigation System Satellites (GNSS) applications. Reliable and fast knowledge about ionospheric variations becomes increasingly important. GNSS users of single-frequency receivers and satellite navigation systems need accurate corrections to remove signal degradation effects caused by the ionosphere. Ionospheric modeling using signal-processing techniques is the subject of discussion in the present contribution. The next problem under discussion is energy disaggregation which is an important issue for energy efficiency and energy consumption awareness. Reliable and fast knowledge about residential energy consumption at appliance level becomes increasingly important nowadays and it is an important mitigation measure to prevent energy wastage. Energy disaggregation or Non-intrusive load monitoring (NILM) is a single channel blind source separation problem where the task is to estimate the consumption of each electrical appliance given the total energy consumption. For both problems various deep learning models (DL) are proposed that cover various aspects of the problem under study, whereas experimental results indicate the proposed methods' superiority compared to the current state of the art.


2011 ◽  
Vol 43 (01) ◽  
pp. 49-76
Author(s):  
Daren B. H. Cline

Suppose that {X t } is a Markov chain such as the state space model for a threshold GARCH time series. The regularity assumptions for a drift condition approach to establishing the ergodicity of {X t } typically are ϕ-irreducibility, aperiodicity, and a minorization condition for compact sets. These can be very tedious to verify due to the discontinuous and singular nature of the Markov transition probabilities. We first demonstrate that, for Feller chains, the problem can at least be simplified to focusing on whether the process can reach some neighborhood that satisfies the minorization condition. The results are valid not just for the transition kernels of Markov chains but also for bounded positive kernels, opening the possibility for new ergodic results. More significantly, we show that threshold GARCH time series and related models of interest can often be embedded into Feller chains, allowing us to apply the conclusions above.


Author(s):  
Boubaker Adel ◽  
Jaghoubbi Salma

This paper examines the extent of the current financial Greek crisis and the contagion effects it concludes toward the euro zone by conducting an empirical investigation of the dependence structure between seventeen European stock markets during the period 2007-2011. In particular, several copula functions are used to model the degree of cross-market linkages. The model is implemented with a GARCH model for the marginal distributions and the student-t copula for the joint distribution which allows capturing nonlinear relationships and offers significant advantages over econometric techniques in analyzing the co-movement of financial time-series. Our empirical results show that there is strong evidence of market dependence in the euro area. However, the dependence remains significant but weaker, for the major of stock markets, after the occurrence of the Greek crisis. 


Sign in / Sign up

Export Citation Format

Share Document