scholarly journals First-Principles Investigations of Single Metal Atoms (Sc, Ti, V, Cr, Mn, and Ni) Embedded in Hexagonal Boron Nitride Nanosheets for the Catalysis of CO Oxidation

2019 ◽  
Vol 4 (3) ◽  
pp. 65 ◽  
Author(s):  
Yi Liu ◽  
Li-Ming Yang ◽  
Eric Ganz

We evaluated isolated transition metal atoms (Sc, Ti, V, Cr, Mn, and Ni) embedded in hexagonal-BN as novel single atom catalysts for CO oxidation. We predicted that embedded Ni atoms should have superior performance for this task. Ti, V, and Mn bind CO2 too strongly and so the reaction will not proceed smoothly. We studied the detailed reaction processes for Sc, Cr, and Ni. The Langmuir–Hinshelwood (LH), Eley–Rideal (ER), and the new termolecular Eley–Rideal (TER) processes for CO oxidation were investigated. Sc was not effective. Cr primarily used the ER process, although the barrier was relatively large at 1.30 eV. Ni was the best of the group, with a 0.44 eV barrier for LH, and a 0.47 eV barrier for TER. Therefore, we predicted that the LH and TER processes could operate at relatively low temperatures between 300 and 500 K.

2021 ◽  
Vol 23 (14) ◽  
pp. 8784-8791
Author(s):  
Qingling Meng ◽  
Ling Zhang ◽  
Jinge Wu ◽  
Shuwei Zhai ◽  
Xiamin Hao ◽  
...  

Theoretical screening of transition metal atoms anchored on monolayer C9N4 as highly stable, catalytically active and selective single-atom catalysts for nitrogen fixation.


RSC Advances ◽  
2015 ◽  
Vol 5 (14) ◽  
pp. 10452-10459 ◽  
Author(s):  
Xin Liu ◽  
Ting Duan ◽  
Changgong Meng ◽  
Yu Han

Taking CO oxidation as a probe, we investigated the electronic structure and reactivity of Pt atoms stabilized by vacancy defects on hexagonal boron nitride (h-BN) by first-principles-based calculations.


2017 ◽  
Vol 19 (44) ◽  
pp. 30069-30077 ◽  
Author(s):  
Shu-Long Li ◽  
Hui Yin ◽  
Xiang Kan ◽  
Li-Yong Gan ◽  
Udo Schwingenschlögl ◽  
...  

We use first-principles calculations to systematically explore the potential of transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) embedded in buckled monolayer g-C3N4 as single-atom catalysts.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lin Ju ◽  
Xin Tan ◽  
Xin Mao ◽  
Yuantong Gu ◽  
Sean Smith ◽  
...  

AbstractEfficient and selective CO2 electroreduction into chemical fuels promises to alleviate environmental pollution and energy crisis, but it relies on catalysts with controllable product selectivity and reaction path. Here, by means of first-principles calculations, we identify six ferroelectric catalysts comprising transition-metal atoms anchored on In2Se3 monolayer, whose catalytic performance can be controlled by ferroelectric switching based on adjusted d-band center and occupation of supported metal atoms. The polarization dependent activation allows effective control of the limiting potential of CO2 reduction on TM@In2Se3 (TM = Ni, Pd, Rh, Nb, and Re) as well as the reaction paths and final products on Nb@In2Se3 and Re@In2Se3. Interestingly, the ferroelectric switching can even reactivate the stuck catalytic CO2 reduction on Zr@In2Se3. The fairly low limiting potential and the unique ferroelectric controllable CO2 catalytic performance on atomically dispersed transition-metals on In2Se3 clearly distinguish them from traditional single atom catalysts, and open an avenue toward improving catalytic activity and selectivity for efficient and controllable electrochemical CO2 reduction reaction.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2339 ◽  
Author(s):  
Xiuwen Zhao ◽  
Bin Qiu ◽  
Guichao Hu ◽  
Weiwei Yue ◽  
Junfeng Ren ◽  
...  

The electronic structure and spin polarization properties of pentagonal structure PdSe2 doped with transition metal atoms are studied through first- principles calculations. The theoretical investigations show that the band gap of the PdSe2 monolayer decreases after introducing Cr, Mn, Fe and Co dopants. The projected densities of states show that p-d orbital couplings between the transition metal atoms and PdSe2 generate new spin nondegenerate states near the Fermi level which make the system spin polarized. The calculated magnetic moments, spin density distributions and charge transfer of the systems suggest that the spin polarization in Cr-doped PdSe2 will be the biggest. Our work shows that the properties of PdSe2 can be modified by doping transition metal atoms, which provides opportunity for the applications of PdSe2 in electronics and spintronics.


2020 ◽  
Vol 22 (17) ◽  
pp. 9216-9224 ◽  
Author(s):  
Zhen Feng ◽  
Yanan Tang ◽  
Weiguang Chen ◽  
Yi Li ◽  
Renyi Li ◽  
...  

2D graphdiyne is a superior candidate for dispersing single transition metal atoms, which can be used as SACs for nitrogen fixation.


Sign in / Sign up

Export Citation Format

Share Document