scholarly journals Insights into Solution Structures of Photosynthetic Protein Complexes from Small-Angle Scattering Methods

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 203
Author(s):  
Maksym Golub ◽  
Adrian Kölsch ◽  
Artem Feoktystov ◽  
Athina Zouni ◽  
Jörg Pieper

High-resolution structures of photosynthetic pigment–protein complexes are often determined using crystallography or cryo-electron microscopy (cryo-EM), which are restricted to the use of protein crystals or to low temperatures, respectively. However, functional studies and biotechnological applications of photosystems necessitate the use of proteins isolated in aqueous solution, so that the relevance of high-resolution structures has to be independently verified. In this regard, small-angle neutron and X-ray scattering (SANS and SAXS, respectively) can serve as the missing link because of their capability to provide structural information for proteins in aqueous solution at physiological temperatures. In the present review, we discuss the principles and prototypical applications of SANS and SAXS using the photosynthetic pigment–protein complexes phycocyanin (PC) and Photosystem I (PSI) as model systems for a water-soluble and for a membrane protein, respectively. For example, the solution structure of PSI was studied using SAXS and SANS with contrast matching. A Guinier analysis reveals that PSI in solution is virtually free of aggregation and characterized by a radius of gyration of about 75 Å. The latter value is about 10% larger than expected from the crystal structure. This is corroborated by an ab initio structure reconstitution, which also shows a slight expansion of Photosystem I in buffer solution at room temperature. In part, this may be due to conformational states accessible by thermally activated protein dynamics in solution at physiological temperatures. The size of the detergent belt is derived by comparison with SANS measurements without detergent match, revealing a monolayer of detergent molecules under proper solubilization conditions.

1984 ◽  
Vol 767 (3) ◽  
pp. 501-506 ◽  
Author(s):  
Marina D. Il'ina ◽  
Vitautas V. Krasauskas ◽  
Richardas J. Rotomskis ◽  
Alexander Yu. Borisov

2019 ◽  
Vol 216 ◽  
pp. 494-506 ◽  
Author(s):  
Alexander Betke ◽  
Heiko Lokstein

Two-photon excitation (TPE) profiles of LHCII samples containing different xanthophyll complements were measured in the presumed 11Ag− → 21Ag− (S0 → S1) transition region of xanthophylls. Additionally, TPE profiles of Chls a and b in solution and of WSCP, which does not contain carotenoids, were measured. The results indicate that direct two-photon absorption by Chls in the presumed S0 → S1 transition spectral region of carotenoids is dominant over that of carotenoids, with negligible contributions of the latter. These results suggest the re-evaluation of previously published TPE data obtained with photosynthetic pigment–protein complexes containing (B)Chls and carotenoids.


1993 ◽  
Vol 340 (1294) ◽  
pp. 381-392 ◽  

Employing discontinuous sucrose density gradient centrifugation of n -dodecyl β-d-maltoside-solubilized thylakoid membranes, three chlorophyll (Chl)-protein complexes containing Chl a , Chl c 2 and peridinin in different proportions, were isolated from the dinoflagellates Symbiodinium microadriaticum, S. kawagutii, S. pilosum and Heterocapsa pygmaea . In S. microadriaticum , the first complex, containing 13% of the total cellular Chl a , and minor quantities of Chl c 2 and peridinin, is associated with polypeptides with apparent molecular mass ( M r ) of 8-9 kDa, and demonstrated inefficient energy transfer from the accessory pigments to Chl a . The second complex contains Chl a , Chl c 2 and peridinin in a molar ratio of 1:1:2, associated with two apoproteins of M r 19-20 kDa, and comprises 45%, 75% and 70%, respectively, of the cellular Chl a , Chl c 2 and peridinin. The efficient energy transfer from Chl c 2 and peridinin to Chl a in this complex is supportive of a light-harvesting function. This Chl a - c 2 - peridin-protein complex represents the major light-harvesting complex in dinoflagellates. The third complex obtained contains 12% of the cellular Chl a , and appears to be the core of photosystem I, associated with a light-harvesting complex. This complex is spectroscopically similar to analogous preparations from different taxonomic groups, but demonstrates a unique apoprotein composition. Antibodies against the water-soluble peridinin-Chl a -protein (sPCP) light-harvesting complexes failed to cross-react with any of the thylakoid-associated complexes, as did antibodies against Chl a - c -fucoxanthin apoprotein (from diatoms). Antibodies against the P 700 apoprotein of plants did not cross-react with the photosystem I complex. Similar results were observed in the other dinoflagellates.


2017 ◽  
Vol 9 (1) ◽  
pp. 89-95 ◽  
Author(s):  
Marco A. Allodi ◽  
John P. Otto ◽  
Sara H. Sohail ◽  
Rafael G. Saer ◽  
Ryan E. Wood ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document