scholarly journals Formation Laws of Direction of Fano Line-Shape in a Ring MIM Plasmonic Waveguide Side-Coupled with a Rectangular Resonator and Nano-Sensing Analysis of Multiple Fano Resonances

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 819
Author(s):  
Dayong Zhang ◽  
Li Cheng ◽  
Zuochun Shen

Plasmonic MIM (metal-insulator-metal) waveguides based on Fano resonance have been widely researched. However, the regulation of the direction of the line shape of Fano resonance is rarely mentioned. In order to study the regulation of the direction of the Fano line-shape, a Fano resonant plasmonic system, which consists of a MIM waveguide coupled with a ring resonator and a rectangle resonator, is proposed and investigated numerically via FEM (finite element method). We find the influencing factors and formation laws of the ‘direction’ of the Fano line-shape, and the optimal condition for the generation of multiple Fano resonances; and the application in refractive index sensing is also well studied. The conclusions can provide a clear theoretical reference for the regulation of the direction of the line shape of Fano resonance and the generation of multi Fano resonances in the designs of plasmonic nanodevices.

2020 ◽  
Vol 12 (1) ◽  
pp. 1 ◽  
Author(s):  
Muhammad Ali ALI Butt ◽  
Nikolay Kazanskiy

We studied the metal-insulator-metal square ring resonator design incorporated with nano-dots that serve to squeeze the surface plasmon wave in the cavity of the ring. The E-field enhances at the boundaries of the nano-dots providing a strong interaction of light with the surrounding medium. As a result, the sensitivity of the resonator is highly enhanced compared to the standard ring resonator design. The best sensitivity of 907 nm/RIU is obtained by placing seven nano-dots of radius 4 nm in all four sides of the ring with a period (ᴧ)= 3r. The proposed design will find applications in biomedical science as highly refractive index sensors. Full Text: PDF References:Z. Han, S. I. Bozhevolnyi. "Radiation guiding with surface plasmon polaritons", Rep. Prog. Phys. 76, 016402 (2013). [CrossRef]N.L. Kazanskiy, S.N. Khonina, M.A. Butt. "Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review", Physica E 117, 113798 (2020). [CrossRef]D.K. Gramotnev, S.I. Bozhevolnyi. "Plasmonics beyond the diffraction limit", Nat. Photonics 4, 83 (2010). [CrossRef]A.N.Taheri, H. Kaatuzian. "Design and simulation of a nanoscale electro-plasmonic 1 × 2 switch based on asymmetric metal–insulator–metal stub filters", Applied Optics 53, 28 (2014). [CrossRef]P. Neutens, L. Lagae, G. Borghs, P. V. Dorpe. "Plasmon filters and resonators in metal-insulator-metal waveguides", Optics Express 20, 4 (2012). [CrossRef]M.A. Butt, S.N. Khonina, N. L. Kazanskiy. "Metal-insulator-metal nano square ring resonator for gas sensing applications", Waves in Random and complex media [CrossRef]M.A.Butt, S.N.Khonina, N.L.Kazanskiy. "Hybrid plasmonic waveguide-assisted Metal–Insulator–Metal ring resonator for refractive index sensing", Journal of Modern Optics 65, 1135 (2018). [CrossRef]M.A.Butt, S.N. Khonina, N.L. Kazanskiy, "Highly sensitive refractive index sensor based on hybrid plasmonic waveguide microring resonator", Waves in Random and complex media [CrossRef]Y. Fang, M. Sun. "Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits", Light:Science & Applications 4, e294 (2015). [CrossRef]H. Lu, G.X. Wang, X.M. Liu. "Manipulation of light in MIM plasmonic waveguide systems", Chin Sci Bull [CrossRef]J.N. Anker et al. "Biosensing with plasmonic nanosensors", Nature Materials 7, 442 (2008). [CrossRef]M.A.Butt, S.N. Khonina, N.L. Kazanskiy. Journal of Modern Optics 66, 1038 (2019).[CrossRef]Z.-D. Zhang, H.-Y. Wang, Z.-Y. Zhang. "Fano Resonance in a Gear-Shaped Nanocavity of the Metal–Insulator–Metal Waveguide", Plasmonics 8,797 (2013) [CrossRef]Y. Yu, J. Si, Y. Ning, M. Sun, X. Deng. Opt. Lett. 42, 187 (2017) [CrossRef]B.H.Zhang, L-L. Wang, H-J. Li et al. "Two kinds of double Fano resonances induced by an asymmetric MIM waveguide structure", J. Opt. 18,065001 (2016) [CrossRef]X. Zhao, Z. Zhang, S. Yan. "Tunable Fano Resonance in Asymmetric MIM Waveguide Structure", Sensors 17, 1494 (2017) [CrossRef]J. Zhou et al. "Transmission and refractive index sensing based on Fano resonance in MIM waveguide-coupled trapezoid cavity", AIP Advances 7, 015020 (2017) [CrossRef]V. Perumal, U. Hashim. "Advances in biosensors: Principle, architecture and applications", J. Appl. Biomed. 12, 1 (2014)[CrossRef]H.Gai, J. Wang , Q. Tian, "Modified Debye model parameters of metals applicable for broadband calculations", Appl. Opt. 46 (12), 2229 (2007) [CrossRef]


2022 ◽  
Author(s):  
Siti Rohimah ◽  
He Tian ◽  
Jinfang Wang ◽  
Jianfeng Chen ◽  
Jina Li ◽  
...  

Abstract A plasmonic structure of metal-insulator-metal (MIM) waveguide consisting of a single baffle waveguide and an r-shaped resonator is designed to produce Fano resonance. The finite element method uses the finite element method to analyze the transmission characteristics and magnetic field distributions of the plasmonic waveguide distributions. The simulation results exhibit two Fano resonances that can be achieved by the interference between a continuum state in the baffle waveguide and a discrete state in the r-shaped resonator. The Fano resonances can be simply tuned by changing geometrical parameters of the plasmonic structure. The value variations of geometrical parameters have different effects on sensitivity. Thus, the sensitivity of the plasmonic structure can achieve 1333 nm/RIU, with a figure of merit of 5876. The results of the designed plasmonic structure offer high sensitivity and nano-scale integration, which are beneficial to refractive index sensors, photonic devices at the chip nano-sensors, and biosensors applications.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1419
Author(s):  
Muhammad A. Butt ◽  
Andrzej Kaźmierczak ◽  
Nikolay L. Kazanskiy ◽  
Svetlana N. Khonina

Herein, a novel cavity design of racetrack integrated circular cavity established on metal-insulator-metal (MIM) waveguide is suggested for refractive index sensing application. Over the past few years, we have witnessed several unique cavity designs to improve the sensing performance of the plasmonic sensors created on the MIM waveguide. The optimized cavity design can provide the best sensing performance. In this work, we have numerically analyzed the device design by utilizing the finite element method (FEM). The small variations in the geometric parameter of the device can bring a significant shift in the sensitivity and the figure of merit (FOM) of the device. The best sensitivity and FOM of the anticipated device are 1400 nm/RIU and ~12.01, respectively. We believe that the sensor design analyzed in this work can be utilized in the on-chip detection of biochemical analytes.


Author(s):  
M.A. Butt ◽  
Andrzej Kaźmierczak ◽  
N. L. Kazanskiy ◽  
S. N. Khonina

Herein, a novel cavity design of racetrack integrated circular cavity established on metal-insulator-metal (MIM) waveguide is suggested for refractive index sensing application. Over the past few years, we have witnessed several unique cavity designs to improve the sensing performance of the plasmonic sensors created on the MIM waveguide. The optimized cavity design can provide the best sensing performance. In this work, we have numerically analyzed the device design by utilizing the finite element method (FEM). The small variations in the geometric parameter of the device can bring a significant shift in the sensitivity and FOM of the device. The best sensitivity and FOM of the anticipated device are 1400 nm/RIU and ~12.01, respectively. We believe that the sensor design analyzed in this work can be utilized in the on-chip detection of biochemical analytes.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1433 ◽  
Author(s):  
Yuan-Fong Chou Chau ◽  
Chung-Ting Chou Chao ◽  
Hung Ji Huang ◽  
N. T. R. N. Kumara ◽  
Chee Ming Lim ◽  
...  

An ultra-high plasmonic refractive index sensing structure composed of a metal–insulator–metal (MIM) waveguide coupled to a T-shape cavity and several metal nanorod defects is proposed and investigated by using finite element method. The designed plasmonic MIM waveguide can constitute a cavity resonance zone and the metal nanorod defects can effectively trap the light in the T-shape cavity. The results reveal that both the size of defects in wider rectangular cavity and the length of narrower rectangular cavity are primary factors increasing the sensitivity performance. The sensitivity can achieve as high as 8280 nm/RIU (RIU denotes the refractive index unit), which is the highest sensitivity reported in plasmonic MIM waveguide-based sensors to our knowledge. In addition, the proposed structure can also serve as a temperature sensor with temperature sensitivity as high as 3.30 nm/°C. The designed structure with simplicity and ease of fabrication can be applied in sensitivity nanometer scale refractive index sensor and may potentially be used in optical on-chip nanosensor.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2097
Author(s):  
Yuan-Fong Chou Chau ◽  
Chung-Ting Chou Chao ◽  
Siti Zubaidah Binti Haji Jumat ◽  
Muhammad Raziq Rahimi Kooh ◽  
Roshan Thotagamuge ◽  
...  

This work proposed a multiple mode Fano resonance-based refractive index sensor with high sensitivity that is a rarely investigated structure. The designed device consists of a metal–insulator–metal (MIM) waveguide with two rectangular stubs side-coupled with an elliptical resonator embedded with an air path in the resonator and several metal defects set in the bus waveguide. We systematically studied three types of sensor structures employing the finite element method. Results show that the surface plasmon mode’s splitting is affected by the geometry of the sensor. We found that the transmittance dips and peaks can dramatically change by adding the dual air stubs, and the light–matter interaction can effectively enhance by embedding an air path in the resonator and the metal defects in the bus waveguide. The double air stubs and an air path contribute to the cavity plasmon resonance, and the metal defects facilitate the gap plasmon resonance in the proposed plasmonic sensor, resulting in remarkable characteristics compared with those of plasmonic sensors. The high sensitivity of 2600 nm/RIU and 1200 nm/RIU can simultaneously achieve in mode 1 and mode 2 of the proposed type 3 structure, which considerably raises the sensitivity by 216.67% for mode 1 and 133.33% for mode 2 compared to its regular counterpart, i.e., type 2 structure. The designed sensing structure can detect the material’s refractive index in a wide range of gas, liquids, and biomaterials (e.g., hemoglobin concentration).


Sign in / Sign up

Export Citation Format

Share Document