scholarly journals Improved Refractive Index-Sensing Performance of Multimode Fano-Resonance-Based Metal-Insulator-Metal Nanostructures

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2097
Author(s):  
Yuan-Fong Chou Chau ◽  
Chung-Ting Chou Chao ◽  
Siti Zubaidah Binti Haji Jumat ◽  
Muhammad Raziq Rahimi Kooh ◽  
Roshan Thotagamuge ◽  
...  

This work proposed a multiple mode Fano resonance-based refractive index sensor with high sensitivity that is a rarely investigated structure. The designed device consists of a metal–insulator–metal (MIM) waveguide with two rectangular stubs side-coupled with an elliptical resonator embedded with an air path in the resonator and several metal defects set in the bus waveguide. We systematically studied three types of sensor structures employing the finite element method. Results show that the surface plasmon mode’s splitting is affected by the geometry of the sensor. We found that the transmittance dips and peaks can dramatically change by adding the dual air stubs, and the light–matter interaction can effectively enhance by embedding an air path in the resonator and the metal defects in the bus waveguide. The double air stubs and an air path contribute to the cavity plasmon resonance, and the metal defects facilitate the gap plasmon resonance in the proposed plasmonic sensor, resulting in remarkable characteristics compared with those of plasmonic sensors. The high sensitivity of 2600 nm/RIU and 1200 nm/RIU can simultaneously achieve in mode 1 and mode 2 of the proposed type 3 structure, which considerably raises the sensitivity by 216.67% for mode 1 and 133.33% for mode 2 compared to its regular counterpart, i.e., type 2 structure. The designed sensing structure can detect the material’s refractive index in a wide range of gas, liquids, and biomaterials (e.g., hemoglobin concentration).

2022 ◽  
Author(s):  
Haowen Chen ◽  
Yunping Qi ◽  
Jinghui Ding ◽  
Yujiao Yuan ◽  
Zhenting Tian ◽  
...  

Abstract A plasmonic resonator system consisting of a metal-insulator-metal waveguide and a Q-shaped resonant cavity is proposed in this paper. The transmission properties of surface plasmon polaritons in this structure are investigated using the finite difference in time domain (FDTD) method, and the simulation results contain two resonant dips. And the physical mechanism is studied by the multimode interference coupled mode theory (MICMT), the theoretical results are in highly consistent with the simulation results. Furthermore, the parameters of the Q-shaped cavity can be controlled to adjust two dips respectively. The refractive index sensor with a sensitivity of 1578nm/RIU and figure of merit (FOM) of 175, performs better than most of the similar structures. Therefore, the results of the study are instructive for the design and application of high sensitivity nanoscale refractive index sensors.


2020 ◽  
Vol 12 (1) ◽  
pp. 1 ◽  
Author(s):  
Muhammad Ali ALI Butt ◽  
Nikolay Kazanskiy

We studied the metal-insulator-metal square ring resonator design incorporated with nano-dots that serve to squeeze the surface plasmon wave in the cavity of the ring. The E-field enhances at the boundaries of the nano-dots providing a strong interaction of light with the surrounding medium. As a result, the sensitivity of the resonator is highly enhanced compared to the standard ring resonator design. The best sensitivity of 907 nm/RIU is obtained by placing seven nano-dots of radius 4 nm in all four sides of the ring with a period (ᴧ)= 3r. The proposed design will find applications in biomedical science as highly refractive index sensors. Full Text: PDF References:Z. Han, S. I. Bozhevolnyi. "Radiation guiding with surface plasmon polaritons", Rep. Prog. Phys. 76, 016402 (2013). [CrossRef]N.L. Kazanskiy, S.N. Khonina, M.A. Butt. "Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review", Physica E 117, 113798 (2020). [CrossRef]D.K. Gramotnev, S.I. Bozhevolnyi. "Plasmonics beyond the diffraction limit", Nat. Photonics 4, 83 (2010). [CrossRef]A.N.Taheri, H. Kaatuzian. "Design and simulation of a nanoscale electro-plasmonic 1 × 2 switch based on asymmetric metal–insulator–metal stub filters", Applied Optics 53, 28 (2014). [CrossRef]P. Neutens, L. Lagae, G. Borghs, P. V. Dorpe. "Plasmon filters and resonators in metal-insulator-metal waveguides", Optics Express 20, 4 (2012). [CrossRef]M.A. Butt, S.N. Khonina, N. L. Kazanskiy. "Metal-insulator-metal nano square ring resonator for gas sensing applications", Waves in Random and complex media [CrossRef]M.A.Butt, S.N.Khonina, N.L.Kazanskiy. "Hybrid plasmonic waveguide-assisted Metal–Insulator–Metal ring resonator for refractive index sensing", Journal of Modern Optics 65, 1135 (2018). [CrossRef]M.A.Butt, S.N. Khonina, N.L. Kazanskiy, "Highly sensitive refractive index sensor based on hybrid plasmonic waveguide microring resonator", Waves in Random and complex media [CrossRef]Y. Fang, M. Sun. "Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits", Light:Science & Applications 4, e294 (2015). [CrossRef]H. Lu, G.X. Wang, X.M. Liu. "Manipulation of light in MIM plasmonic waveguide systems", Chin Sci Bull [CrossRef]J.N. Anker et al. "Biosensing with plasmonic nanosensors", Nature Materials 7, 442 (2008). [CrossRef]M.A.Butt, S.N. Khonina, N.L. Kazanskiy. Journal of Modern Optics 66, 1038 (2019).[CrossRef]Z.-D. Zhang, H.-Y. Wang, Z.-Y. Zhang. "Fano Resonance in a Gear-Shaped Nanocavity of the Metal–Insulator–Metal Waveguide", Plasmonics 8,797 (2013) [CrossRef]Y. Yu, J. Si, Y. Ning, M. Sun, X. Deng. Opt. Lett. 42, 187 (2017) [CrossRef]B.H.Zhang, L-L. Wang, H-J. Li et al. "Two kinds of double Fano resonances induced by an asymmetric MIM waveguide structure", J. Opt. 18,065001 (2016) [CrossRef]X. Zhao, Z. Zhang, S. Yan. "Tunable Fano Resonance in Asymmetric MIM Waveguide Structure", Sensors 17, 1494 (2017) [CrossRef]J. Zhou et al. "Transmission and refractive index sensing based on Fano resonance in MIM waveguide-coupled trapezoid cavity", AIP Advances 7, 015020 (2017) [CrossRef]V. Perumal, U. Hashim. "Advances in biosensors: Principle, architecture and applications", J. Appl. Biomed. 12, 1 (2014)[CrossRef]H.Gai, J. Wang , Q. Tian, "Modified Debye model parameters of metals applicable for broadband calculations", Appl. Opt. 46 (12), 2229 (2007) [CrossRef]


2020 ◽  
Vol 10 (15) ◽  
pp. 5096
Author(s):  
Hao Su ◽  
Shubin Yan ◽  
Xiaoyu Yang ◽  
Jing Guo ◽  
Jinxi Wang ◽  
...  

In this article, a novel refractive index sensor composed of a metal–insulator–metal (MIM) waveguide with two rectangular stubs coupled with an elliptical ring resonator is proposed, the geometric parameters of which are controlled at a few hundreds of nanometer size. The transmission feature of the structure was studied by the finite element method based on electronic design automation (EDA) software COMSOL Multiphysics 5.4 (Stockholm, Sweden). The rectangular stub resonator can be thought of as a Fabry–Perot (FP) cavity, which can facilitate the Fano resonance. The simulation results reveal that the structure has a symmetric Lorentzian resonance, as well as an ultrasharp and asymmetrical Fano resonance. By adjusting the geometrical parameters, the sensitivity and figure of merit (FOM) of the structure can be optimized flexibly. After adjustments and optimization, the maximum sensitivity can reach up to 1550 nm/RIU (nanometer/Refractive Index Unit) and its FOM is 43.05. This structure presented in this article also has a promising application in highly integrated medical optical sensors to detect the concentration of hemoglobin and monitor body health.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 791 ◽  
Author(s):  
Mengmeng Wang ◽  
Meng Zhang ◽  
Yifei Wang ◽  
Ruijuan Zhao ◽  
Shubin Yan

Herein, the design for a tunable plasmonic refractive index nanosensor is presented. The sensor is composed of a metal–insulator–metal waveguide with a baffle and a circular split-ring resonator cavity. Analysis of transmission characteristics of the sensor structures was performed using the finite element method, and the influence of the structure parameters on the sensing characteristics of the sensor is studied in detail. The calculation results show that the structure can realize dual Fano resonance, and the structural parameters of the sensor have different effects on Fano resonance. The peak position and the line shape of the resonance can be adjusted by altering the sensitive parameters. The maximum value of structural sensitivity was found to be 1114.3 nm/RIU, with a figure of merit of 55.71. The results indicate that the proposed structure can be applied to optical integrated circuits, particularly in high sensitivity nanosensors.


Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 640 ◽  
Author(s):  
Xudong Li ◽  
Shuguang Li ◽  
Xin Yan ◽  
Dongming Sun ◽  
Zheng Liu ◽  
...  

In this paper we propose a gold-plated photonic crystal fiber (PCF) refractive index sensor based on surface plasmon resonance (SPR), in which gold is coated on the external surface of PCF for easy fabrication and practical detection. The finite element method (FEM) is used for the performance analysis, and the numerical results show that the thickness of the gold film, the refractive index of the analyte, the radius of the air hole in the first layer, the second layer, and the central air hole can affect the sensing properties of the sensor. By optimizing the sensor structure, the maximum wavelength sensitivity can reach 11000 nm/RIU and the maximum amplitude sensitivity can reach 641 RIU−1. Due to its high sensitivity, the proposed sensor can be used for practical biological and chemical sensing.


2021 ◽  
Author(s):  
Moutusi De ◽  
Vinod Kumar Singh

Abstract In this article, an efficient high birefringent D-shaped photonic crystal fiber (HB-D-PCF) plasmonic refractive index sensor is reported. It is able to work over a long low refractive index (RI) analyte range from 1.29 to 1.36. This modified simple structured hexagonal PCF has high birefringence in the near-infrared region. A thin gold film protected by a titanium dioxide (TiO2) layer is deposited on the D-surface of the PCF which acts as surface plasmon active layer. The sensor consists of an analyte channel on the top of the fiber. The performance of the HB-D-PCF is analyzed based on finite element method (FEM). Both wavelength and amplitude interrogation techniques are applied to study the sensing performance of the optimized sensor. Numerical results show wavelength and amplitude sensitivity of 9245nm/RIU and 1312 RIU-1 respectively with high resolution. Owing to the high sensitivity, long range sensing ability as well as spectral stability the designed HB-D-PCF SPR sensor is a potential candidate for water pollution control, glucose concentration testing, biochemical analyte detection as well as portable device fabrication.


2018 ◽  
Vol 67 (19) ◽  
pp. 197301
Author(s):  
Qi Yun-Ping ◽  
Zhang Xue-Wei ◽  
Zhou Pei-Yang ◽  
Hu Bing-Bing ◽  
Wang Xiang-Xian

Sign in / Sign up

Export Citation Format

Share Document