scholarly journals Application of Fundamental Models for Creep Rupture Prediction of Sanicro 25 (23Cr25NiWCoCu)

Crystals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 638
Author(s):  
Junjing He ◽  
Rolf Sandström

Creep rupture prediction is always a critical matter for materials serving at high temperatures and stresses for a long time. Empirical models are frequently used to describe creep rupture, but the parameters of the empirical models do not have any physical meanings, and the model cannot reveal the controlling mechanisms during creep rupture. Fundamental models have been proposed where no fitting parameters are involved. Both for ductile and brittle creep rupture, fundamental creep models have been used for the austenitic stainless steel Sanicro 25 (23Cr25NiWCoCu). For ductile creep rupture, the dislocation contribution, solid solution hardening, precipitation hardening, and splitting of dislocations were considered. For brittle creep rupture, creep cavitation models were used taking grain boundary sliding, formation, and growth of creep cavities into account. All parameters in the models have been well defined and no fitting is involved. MatCalc was used for the calculation of the evolution of precipitates. Some physical parameters were obtained with first-principles methods. By combining the ductile and brittle creep rupture models, the final creep rupture prediction was made for Sanicro 25. The modeling results can predict the experiments at long-term creep exposure times in a reasonable way.

1994 ◽  
Vol 47 (1S) ◽  
pp. S122-S131 ◽  
Author(s):  
M. W. D. van der Burg ◽  
E. van der Giessen

Creep rupture in random polycrystalline aggregates is investigated numerically in terms of multi-grain cell studies using a Delaunay network modelling technique. The model involves a representation of the crystalline aggregate by means of special purpose elements attributed to each grain facet. These Delaunay elements account for elastic and creep deformations of the grains, free grain boundary sliding, as well as for the nucleation and diffusive growth of grain boundary cavities until coalescence leads to a facet microcrack. Damage accumulation is simulated numerically, until an excessive number of microcracks cause des-integration of the polycrystal. Primary attention is on the influence of randomness in the microstructure on creep rupture, either in terms of random variations of the size and shape of hexagonal grains, or in terms of random variations in the nucleation properties of grain boundaries. It is found that randomness always tends to decrease the life time. In particular, it is found that the life time depends sensitively on random variations of the geometry of the microstructure.


2006 ◽  
Vol 326-328 ◽  
pp. 1313-1316 ◽  
Author(s):  
Woo Gon Kim ◽  
Song Nan Yin ◽  
Woo Seog Ryu ◽  
Won Yi

This paper presents the results of the Minimum Commitment Method (MCM) applied to predict the creep rupture life of type 316LN SS. Constant A, and the function of P(T) and G(σ) being used in the MCM equation were determined. To determine a proper value of the constant A, a focal point method and a trial and error one were adopted, respectively. It was found to be A=-0.02~-0.05 for type 316LN SS. Each prediction curve with the A values were presented up to 106 hours and compared to the experimental data at each temperature. Using the short-term creep rupture data for under 2,000 hours, a long-time rupture reaching up to 106 hours was predicted by the MCM.


1988 ◽  
Vol 23 (2) ◽  
pp. 621-628 ◽  
Author(s):  
Manabu Tanaka ◽  
Ohmi Miyagawa ◽  
Tsuneaki Sakaki ◽  
Hiroshi Iizuka ◽  
Fumio Ashihara ◽  
...  

Author(s):  
Nancy J. Tighe

Silicon nitride is one of the ceramic materials being considered for the components in gas turbine engines which will be exposed to temperatures of 1000 to 1400°C. Test specimens from hot-pressed billets exhibit flexural strengths of approximately 50 MN/m2 at 1000°C. However, the strength degrades rapidly to less than 20 MN/m2 at 1400°C. The strength degradition is attributed to subcritical crack growth phenomena evidenced by a stress rate dependence of the flexural strength and the stress intensity factor. This phenomena is termed slow crack growth and is associated with the onset of plastic deformation at the crack tip. Lange attributed the subcritical crack growth tb a glassy silicate grain boundary phase which decreased in viscosity with increased temperature and permitted a form of grain boundary sliding to occur.


1983 ◽  
Vol 44 (C9) ◽  
pp. C9-759-C9-764
Author(s):  
E. Bonetti ◽  
A. Cavallini ◽  
E. Evangelista ◽  
P. Gondi

Sign in / Sign up

Export Citation Format

Share Document