Creep-Life Prediction of Type 316LN Stainless Steel by Minimum Commitment Method

2006 ◽  
Vol 326-328 ◽  
pp. 1313-1316 ◽  
Author(s):  
Woo Gon Kim ◽  
Song Nan Yin ◽  
Woo Seog Ryu ◽  
Won Yi

This paper presents the results of the Minimum Commitment Method (MCM) applied to predict the creep rupture life of type 316LN SS. Constant A, and the function of P(T) and G(σ) being used in the MCM equation were determined. To determine a proper value of the constant A, a focal point method and a trial and error one were adopted, respectively. It was found to be A=-0.02~-0.05 for type 316LN SS. Each prediction curve with the A values were presented up to 106 hours and compared to the experimental data at each temperature. Using the short-term creep rupture data for under 2,000 hours, a long-time rupture reaching up to 106 hours was predicted by the MCM.

2005 ◽  
Vol 297-300 ◽  
pp. 2272-2277 ◽  
Author(s):  
Woo Gon Kim ◽  
Song Nam Yoon ◽  
Woo Seog Ryu

To predict the creep-rupture life of type 316LN stainless steels which are major structural components of liquid metal reactors, a number of creep-rupture data were collected through literature survey and experimental data of KAERI. Using the data, the creep-rupture life was analyzed by means of the Larson-Miller, the Orr-Sherby-Dorn and the Manson-Haferd parametric methods. Polynomial equations for predicting the creep life were obtained. In order to analyze the acceptance and use of the parametric methods, standard error values were accurately investigated by statistical process of the creep data. As for the results, the three parametric methods are found to be favorable in predicting the creep life of type 316LN stainless steel. Each method did not generate a large error in the standard error of the estimate with variations of the temperatures, but the Orr-Sherby-Dorn and the Manson-Haferd methods showed a better agreement than the Larson-Miller one. Especially, at higher the 700oC, the Manson-Haferd method conformed well to the experimental data. The reason is because the Manson-Haferd method includes two constants of ta and Ta.


2007 ◽  
Vol 561-565 ◽  
pp. 163-166
Author(s):  
Yoshihiro Terada ◽  
Tatsuo Sato

Creep rupture tests were performed for a die-cast Mg-Al-Ca alloy AX52 (X representing calcium) at 29 kinds of creep conditions in the temperature range between 423 and 498 K. The creep curve for the alloy is characterized by a minimum in the creep rate followed by an accelerating stage. The minimum creep rate (ε& m) and the creep rupture life (trup) follow the phenomenological Monkman-Grant relationship; trup = C0 /ε& m m. It is found for the AX52 die-cast alloy that the exponent m is unity and the constant C0 is 2.0 x 10-2, independent of creep testing temperature. The values of m and C0 are compared with those for another die-cast magnesium alloys. The value m=1 is generally detected for die-cast magnesium alloys. On the contrary, the value of C0 sensitively depends on alloy composition, which is reduced with increasing the concentration of alloying elements such as Al, Zn and Ca.


Author(s):  
Kyungmok Kim

In this article, a creep–rupture model of aluminum alloys is developed using a time-dependent cohesive zone law. For long-term creep rupture, a time jump strategy is used in a cohesive zone law. Stress–rupture scatter of aluminum alloy 4032-T6 is fitted with a power law form. Then, change in the slope of a stress-rupture line is identified on a log–log scale. Implicit finite element analysis is employed with a model containing a cohesive zone. Stress–rupture curves at various given temperatures are calculated and compared with experimental ones. Results show that a proposed method allows predicting creep–rupture life of aluminum alloys.


Crystals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 638
Author(s):  
Junjing He ◽  
Rolf Sandström

Creep rupture prediction is always a critical matter for materials serving at high temperatures and stresses for a long time. Empirical models are frequently used to describe creep rupture, but the parameters of the empirical models do not have any physical meanings, and the model cannot reveal the controlling mechanisms during creep rupture. Fundamental models have been proposed where no fitting parameters are involved. Both for ductile and brittle creep rupture, fundamental creep models have been used for the austenitic stainless steel Sanicro 25 (23Cr25NiWCoCu). For ductile creep rupture, the dislocation contribution, solid solution hardening, precipitation hardening, and splitting of dislocations were considered. For brittle creep rupture, creep cavitation models were used taking grain boundary sliding, formation, and growth of creep cavities into account. All parameters in the models have been well defined and no fitting is involved. MatCalc was used for the calculation of the evolution of precipitates. Some physical parameters were obtained with first-principles methods. By combining the ductile and brittle creep rupture models, the final creep rupture prediction was made for Sanicro 25. The modeling results can predict the experiments at long-term creep exposure times in a reasonable way.


Author(s):  
Kouichi Maruyama ◽  
Kyosuke Yoshimi

Long term creep rupture life is usually evaluated from short term data by a time-temperature parameter (TTP) method. The apparent activation energy Q for rupture life of steels sometimes changes from a high value of short term creep to a low value of long term creep. However, the conventional TTP analyses ignore the decrease in Q, resulting in the overestimation of rupture life recognized recently in advanced high Cr ferritic steels. A multi region analysis of creep rupture data is applied to a creep data set of Gr.122 steel; in the analysis a creep rupture data is divided into several data sets so that Q value is unique in each divided data set. The multi region analysis provides the best fit to the data and the lowest value of 105 h creep rupture strength among the three ways of data analysis examined. The conventional single region analysis cannot correctly represent the data points and predicts the highest strength. A half of 0.2% proof stress could not be an appropriate boundary for dividing data to be used in the multi region analysis. In the 2001 Edition of ASME Code an F average concept has been proposed as a substitution for the safety factor of 2/3 for average rupture stress. The allowable stress of Gr.122 steel may decrease significantly when the F average concept and the multi region analysis are adopted.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1310 ◽  
Author(s):  
Tai-Jung Wu ◽  
Chien-Chun Liao ◽  
Tai-Cheng Chen ◽  
Ren-Kae Shiue ◽  
Leu-Wen Tsay

T92 steel tubes have been widely applied in advanced supercritical boilers to replace Gr.91 tubes. Simulated samples with microstructures similar to those present in the heat-affected zone (HAZ) of a T92 steel weld were subjected to short-term creep tests in the study. T92 steel tubes were normalized at either 1213 K (L) or 1333 K (H) for 1 h, followed by tempering (T) at 1033 K for 2 h. After the normalizing and tempering treatments, the HT samples comprised finer precipitates but in greater numbers along the prior austenite grain boundaries (PAGBs) and martensite lath boundaries, as compared with those of the LT samples. The HAZ microstructures in the T92 steel welds were simulated by using an infrared heating system, which included over-tempering (OT, below AC1) and partial transformation (PT, slightly below AC3) zones. Martensite laths in the OT sample were more likely to be replaced by numerous cellular structures or subgrains together with spherodized carbides mainly located at the lath and austenite grain boundaries. Furthermore, coarser but fewer carbides were found along the refined lath and grain boundaries in the PT samples, in comparison with other samples in each group. Short-term creep tests showed that the PT samples were more likely to fracture than other samples in each group. Moreover, under the same testing conditions, the microstructures of T92 steel were more stable and resistant to degradation than those of T91 steel after welding or loading at elevated temperatures. Such events were responsible for higher creep resistance of the simulated T92 samples than that of the simulated T91 samples under the same creep-rupture conditions.


2013 ◽  
Vol 43 (4) ◽  
pp. 164-172 ◽  
Author(s):  
Mariko Hino ◽  
Yinsheng He ◽  
Kejian Li ◽  
Jungchel Chang ◽  
Keesam Shin

Author(s):  
John Pumwa

The complex thermal-mechanical loading of power-generating plant components usually comprises of creep, high-cycle and low-cycle fatigue which are thermally induced by start-ups, load changes and shut-downs, producing instationary temperature gradients and hence creating strain as well as stress fields. In order to select the correct materials for these hostile environmental conditions, it is vitally important to understand the behaviour of mechanical properties such as creep rupture properties of these materials. This paper reports the results of standard creep rupture tests of P122 (HCM12A or 12Cr-1.8W-1.5Cu) high temperature boiler material. P122 is one of the latest developed materials for high temperature environments, which has the potential to be successful in hostile environments. The tests were conducted at temperatures ranging from 550°C to 700°C at 50°C intervals with stress levels ranging from 80–400 MPa using a locally made creep rupture testing machine. The results are found to have stable creep-rupture strength at short term creep stage for over 800-hours at elevated temperatures. Creep life prediction from Larson-Miller relationship was also carried out and the accuracy of life prediction is demonstrated. Moreover, the fracture mode assessments strongly revealed a typical ductile transgranular fracture mode with dimples and voids.


Author(s):  
Kazuhiro Kimura ◽  
Kota Sawada ◽  
Masakazu Fujitsuka ◽  
Hideaki Kushima

Creep test of ASME Grade 23 steel has been conducted at 625 and 650°C in helium gas atmosphere. Long-term creep strength of the steel in helium gas was compared with that in air and the influence of oxidation on long-term creep strength was investigated. Creep rupture strength drop was observed in the long-term at 625 and 650°C in air, and the same creep rupture strength drop was observed also in helium gas at 625°C. On the other hand, although creep rupture strength drop was observed in the long-term at 650°C in helium gas, creep rupture life in the long-term in helium gas was slightly longer than that in air at 650°C. Creep rupture life in the long-term at 650°C in air is reduced by not only degradation due to microstructural change, but also marked oxidation, however, that at 625°C is considered to be shortened mainly by a degradation caused by microstructural change. Long-term creep strength of ASME Grade 23 steel at 600°C and above should be reevaluated in consideration of strength drop due to microstructural change.


2016 ◽  
Vol 61 (2) ◽  
pp. 701-704 ◽  
Author(s):  
M. Cieśla ◽  
M. Mańka ◽  
F. Binczyk ◽  
P. Gradoń

Abstract The paper presents the results of analysis of creep behaviour in short term creep tests of cast MAR-247 nickel-based superalloy samples made using various modification techniques and heat treatment. The accelerated creep tests were performed under temperature of 982 °C and the axial stresses of σ = 150 MPa (variant I) and 200 MPa (variant II). The creep behaviour was analysed based on: creep durability (creep rupture life), steady-state creep rate and morphological parameters of macro- and microstructure. It was observed that the grain size determines the creep durability in case of test conditions used in variant I, durability of coarse-grained samples was significantly higher.


Sign in / Sign up

Export Citation Format

Share Document