scholarly journals Phylogenetically Diverse Fusarium Species Associated with Sorghum (Sorghum Bicolor L. Moench) and Finger Millet (Eleusine Coracana L. Garten) Grains from Ethiopia

Diversity ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 93 ◽  
Author(s):  
Alemayehu Chala ◽  
Tulu Degefu ◽  
May Bente Brurberg

Fusarium is one of the most diverse fungal genera affecting several crops around the world. This study describes the phylogeny of Fusarium species associated with grains of sorghum and finger millet from different parts of Ethiopia. Forty-two sorghum and 34 finger millet grain samples were mycologically analysed. All of the sorghum and more than 40% of the finger millet grain samples were contaminated by the Fusarium species. The Fusarium load was higher in sorghum grains than that in finger millet grains. In addition, 67 test isolates were phylogenetically analysed using EF-1α and β-tubulin gene primers. Results revealed the presence of eight phylogenetic placements within the genus Fusarium, where 22 of the isolates showed a close phylogenetic relation to the F. incarnatum–equiseti species complex. Nevertheless, they possess a distinct shape of apical cells of macroconidia, justifying the presence of new species within the Fusarium genus. The new species was the most dominant, represented by 33% of the test isolates. The current work can be seen as an important addition to the knowledge of the biodiversity of fungal species that exists within the Fusarium genus. It also reports a previously unknown Fusarium species that needs to be investigated further for toxin production potential.

2016 ◽  
Vol 79 (10) ◽  
pp. 1753-1758 ◽  
Author(s):  
ELENA FERRUZ ◽  
SUSANA LORAN ◽  
MARTA HERRERA ◽  
ISABEL GIMENEZ ◽  
NOEMI BERVIS ◽  
...  

ABSTRACT The possible role of natural phenolic compounds in inhibiting fungal growth and toxin production has been of recent interest as an alternative strategy to the use of chemical fungicides for the maintenance of food safety. Fusarium is a worldwide fungal genus mainly associated with cereal crops. The most important Fusarium mycotoxins are trichothecenes, zearalenone, and fumonisins. This study was conducted to evaluate the potential of four natural phenolic acids (caffeic, ferulic, p-coumaric, and chlorogenic) for the control of mycelial growth and mycotoxin production by six toxigenic species of Fusarium. The addition of phenolic acids to corn meal agar had a marked inhibitory effect on the radial growth of all Fusarium species at levels of 2.5 to 10 mM in a dose-response pattern, causing total inhibition (100%) in all species except F. sporotrichioides and F. langsethiae. However, the effects of phenolic acids on mycotoxin production in maize kernels were less evident than the effects on growth. The fungal species differed in their responses to the phenolic acid treatments, and significant reductions in toxin concentrations were observed only for T-2 and HT-2 (90% reduction) and zearalenone (48 to 77% reduction). These results provide data that could be used for developing pre- and postharvest strategies for controlling Fusarium infection and subsequent toxin production in cereal grains.


2005 ◽  
Vol 95 (3) ◽  
pp. 275-283 ◽  
Author(s):  
John F. Leslie ◽  
Kurt A. Zeller ◽  
Sandra C. Lamprecht ◽  
John P. Rheeder ◽  
Walter F. O. Marasas

Fusarium isolates recovered from sorghum and millet are commonly identified as F. moniliforme, but with the recognition of new species in this group, the strains given this name are being re-evaluated. We analyzed five strains each from five Fusarium species (F. andiyazi, F. nygamai, F. pseudonygamai, F. thapsinum, and F. verticillioides) often associated with sorghum and millet for their ability to produce fumonisin and moniliformin, their toxicity to ducklings, and their ability to cause disease on sorghum seedlings in vitro. These species can be distinguished with isozymes (fumarase, NADP-dependent isocitrate dehydrogenase, and malate dehydrogenase) and with banding patterns resulting from amplified fragment length polymorphisms. Two species, F. pseudonygamai and F. thapsinum, produced high levels of moniliformin, but little or no fumonisins, and were consistently highly toxigenic in the duckling tests. Two species, F. verticillioides and F. nygamai, produced high levels of fumonisins, but little or no moniliformin, and also were toxigenic in the duckling tests. F. andiyazi produced little or no toxin and was the least toxigenic in the duckling tests. In sorghum seedling pathogenicity tests, F. thapsinum was the most virulent followed by F. andiyazi, then F. verticillioides, and finally F. nygamai and F. pseudonygamai, which were similar to each other. Thus, these five species, which would once have all been called F. moniliforme, differ sufficiently in terms of plant pathogenicity and toxin production profile, that their previous misidentification could explain inconsistencies in the literature and differences observed by researchers who thought they were all working with the same fungal species.


Author(s):  
M. Linga Rao ◽  
Bhumi G ◽  
Savithramma N

Silver nanoparticles (SNPs) exhibit tremendous applications in medicine as antimicrobial agent.  The use of different parts of plants for the synthesis of nanoparticles is considered as a green technology as it does not involve any harmful chemicals.  In the present study, we report a rapid biosynthesis of silver nanoparticles from aqueous leaf extract of medicinal plant Allamanda cathartica.  The active phytochemicals present in the plant were responsible for the quick reduction of silver ion to metallic silver nanoparticles. The reduced silver nanoparticles were characterized by using UV-Vis spectrophotometry, Scanning Electron Microscope (SEM), Energy Dispersive Analysis of X-ray (EDAX) and Atomic Force Microscopy (AFM).  The spherical shaped silver nanoparticles were observed and it was found to 19-40 nm range of size.  These phytosynthesized SNPs were tested for their antimicrobial activity and it analyzed by measuring the inhibitory zone. A. cathartica aqueous leaf extract of SNPs showed highest toxicity to Pseudomonas followed by Klebsiella, Bacillus and E. coli and lowest toxicity towards Proteus. In fungal species, highest inhibition zone was noted against Rhizopus followed by Curvularia, Aspergillus flavus and Aspergillus niger and minimum inhibition zone was observed against Fusarium species.  These results suggest a promising potential of Indian plant-based green chemistry for production of SNPs for biomedical and nanotechnology applications.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1063
Author(s):  
Laura Gálvez ◽  
Daniel Palmero

In recent years, different postharvest alterations have been detected in garlic. In many cases, the symptoms are not well defined, or the etiology is unknown, which further complicates the selection of bulbs during postharvest handling. To characterize the different symptoms of bulb rot caused by fungi, garlic bulb samples were collected from six Spanish provinces in two consecutive years. Eight different fungal species were identified. The most prevalent postharvest disease was Fusarium dry rot (56.1%), which was associated with six Fusarium species. Fusarium proliferatum was detected in more than 85% of symptomatic cloves, followed by F. oxysporum and F. solani. Pathogenicity tests did not show a significant correlation between virulence and mycotoxin production (fumonisins, beauvericin, and moniliformin) or the mycelial growth rate. Penicillium allii was detected in 12.2% of the samples; it was greatly influenced by the harvest season and garlic cultivar, and three different morphotypes were identified. Stemphylium vesicarium and Embellisia allii were pathogenic to wounded cloves. Some of the isolated fungal species produce highly toxic mycotoxins, which may have a negative impact on human health. This work is the first to determine the quantitative importance, pathogenicity, and virulence of the causative agents of postharvest garlic rot in Spain.


Phytotaxa ◽  
2014 ◽  
Vol 177 (1) ◽  
pp. 49 ◽  
Author(s):  
Nicolás Niveiro ◽  
Orlando Fabian Popoff ◽  
Edgardo Albertó

The Atlantic Forest is the second largest South American tropical-subtropical rainforest and one of the most diverse ecosystems on earth. Hemimycena longipleurocystidiata, a fungal species collected in the Argentinean Atlantic forest, is proposed as new. It is characterized by its whitish and large basidiomata with large pleuro- and cheilocystidia. The species is here described and illustrated and a key is provided to the Hemimycena species known from Argentina.


2013 ◽  
Vol 43 (1) ◽  
pp. 29-40 ◽  
Author(s):  
Delfina Popiel ◽  
Hanna Kwaśny ◽  
Jerzy Chełkowski ◽  
Łukasz Stępień ◽  
Magdalena Laskowska

<em>Fusarium</em>-ear blight is a destructive disease in various cereal-growing regions and leads to significant yield and quality losses for farmers and to contamination of cereal grains with mycotoxins, mainly deoxynivalenol and derivatives, zearalenone and moniliformin. <em>Fusarium</em> pathogens grow well and produce significant inoculum on crop resiudues. Reduction of mycotoxins production and pathogen sporulation may be influenced by saprophytic fungi, exhibiting antagonistic effect. Dual culture bioassays were used to examine the impact of 92 isolates (belonging to 29 fungal species) against three toxigenic species, i.e. <em>Fusarium avenaceum</em> (Corda) Saccardo, <em>F. culmorum</em> (W.G.Smith) Saccardo and <em>F. graminearum</em> Schwabe. Both <em>F.culmorum</em> and <em>F. graminearum</em> isolates produce trichothecene mycotoxins and mycohormone zearalenone and are considered to be the most important cereal pathogens worldwide. Infection with those pathogens leads to accumulation of mycotoxins: deoxynivalenol (DON) and zearalenone (ZEA) in grains. <em>Fusarium avenaceum</em> isolates are producers of moniliformin (MON) and enniatins. Isolates of <em>Trichoderma</em> sp. were found to be the most effective ones to control the growth of examined <em>Fusarium</em> species. The response of <em>Fusarium</em> isolates to antagonistic activity of <em>Trichoderma</em> isolates varied and also the isolates of <em>Trichoderma</em> differed in their antagonistic activity against <em>Fusarium</em> isolates. The production of MON by two isolates of F. avenaceum in dual culture on rice was reduced by 95% to 100% by <em>T. atroviride</em> isolate AN 35. The same antagonist reduced the amount of moniliformin from 100 μg/g to 6.5 μg/g when inoculated to rice culture contaminated with MON, which suggests the possible decomposition of this mycotoxin.


2020 ◽  
Vol 44 (1) ◽  
pp. 1-40
Author(s):  
W.M. Jaklitsch ◽  
H. Voglmayr

Fresh collections and their ascospore and conidial isolates backed up by type studies and molecular phylogenetic analyses of a multigene matrix of partial nuSSU-, complete ITS, partial LSU rDNA, rpb2, tef1 and tub2 sequences were used to evaluate the boundaries and species composition of Fenestella and related genera of the Cucurbitariaceae. Eight species, of which five are new, are recognised in Fenestella s.str., 13 in Parafenestella with eight new species and two in the new genus Synfenestella with one new species. Cucurbitaria crataegi is combined in Fenestella, C. sorbi in Synfenestella, Fenestella faberi and Thyridium salicis in Parafenestella. Cucurbitaria subcaespitosa is distinct from C. sorbi and combined in Neocucurbitaria. Fenestella minor is a synonym of Valsa tetratrupha, which is combined in Parafenestella. Cucurbitaria marchica is synonymous with Parafenestella salicis, Fenestella bavarica with S. sorbi, F. macrospora with F. media, and P. mackenziei is synonymous with P. faberi, and the latter is lectotypified. Cucurbitaria sorbi, C. subcaespitosa and Fenestella macrospora are lecto- and epitypified, Cucurbitaria crataegi, Fenestella media, F. minor and Valsa tetratrupha are epitypified in order to stabilise the names in their phylogenetic positions. A neotype is proposed for Thyridium salicis. A determinative key to species is given. Asexual morphs of fenestelloid fungi are phoma-like and do not differ from those of other representatives of the Cucurbitariaceae. The phylogenetic structure of the fenestelloid clades is complex and can only be resolved at the species level by protein-coding genes, such as rpb2, tef1 and tub2. All fungal species studied here occur, as far as has been possible to determine, on members of Diaporthales, most frequently on asexual and sexual morphs of Cytospora.


Sign in / Sign up

Export Citation Format

Share Document