scholarly journals Impact of selected antagonistic fungi on Fusarium species – toxigenic cereal pathogens

2013 ◽  
Vol 43 (1) ◽  
pp. 29-40 ◽  
Author(s):  
Delfina Popiel ◽  
Hanna Kwaśny ◽  
Jerzy Chełkowski ◽  
Łukasz Stępień ◽  
Magdalena Laskowska

<em>Fusarium</em>-ear blight is a destructive disease in various cereal-growing regions and leads to significant yield and quality losses for farmers and to contamination of cereal grains with mycotoxins, mainly deoxynivalenol and derivatives, zearalenone and moniliformin. <em>Fusarium</em> pathogens grow well and produce significant inoculum on crop resiudues. Reduction of mycotoxins production and pathogen sporulation may be influenced by saprophytic fungi, exhibiting antagonistic effect. Dual culture bioassays were used to examine the impact of 92 isolates (belonging to 29 fungal species) against three toxigenic species, i.e. <em>Fusarium avenaceum</em> (Corda) Saccardo, <em>F. culmorum</em> (W.G.Smith) Saccardo and <em>F. graminearum</em> Schwabe. Both <em>F.culmorum</em> and <em>F. graminearum</em> isolates produce trichothecene mycotoxins and mycohormone zearalenone and are considered to be the most important cereal pathogens worldwide. Infection with those pathogens leads to accumulation of mycotoxins: deoxynivalenol (DON) and zearalenone (ZEA) in grains. <em>Fusarium avenaceum</em> isolates are producers of moniliformin (MON) and enniatins. Isolates of <em>Trichoderma</em> sp. were found to be the most effective ones to control the growth of examined <em>Fusarium</em> species. The response of <em>Fusarium</em> isolates to antagonistic activity of <em>Trichoderma</em> isolates varied and also the isolates of <em>Trichoderma</em> differed in their antagonistic activity against <em>Fusarium</em> isolates. The production of MON by two isolates of F. avenaceum in dual culture on rice was reduced by 95% to 100% by <em>T. atroviride</em> isolate AN 35. The same antagonist reduced the amount of moniliformin from 100 μg/g to 6.5 μg/g when inoculated to rice culture contaminated with MON, which suggests the possible decomposition of this mycotoxin.

2017 ◽  
pp. 261-269 ◽  
Author(s):  
Dragana Bjelic ◽  
Maja Ignjatov ◽  
Jelena Marinkovic ◽  
Nemanja Spremo ◽  
Maja Karaman ◽  
...  

Biocontrol using plant growth-promoting rhizobacteria (PGPR) represents an alternative approach to disease management, since PGPR are known to promote growth and reduce diseases in various crops. Among the different PGPR, members of the genus Bacillus are prefered for most biotechnological uses due to their capability to form extremely resistant spores and produce a wide variety of metabolites with antimicrobial activity. The objective of this research was to identify antagonistic bacteria for management of the plant diseases. Eleven isolates of Bacillus spp. were obtained from the soil samples collected from different localities in the Province of Vojvodina. The antifungal activity of bacterial isolates against five fungal species was examined using a dual plate assay. Bacillus isolates exhibited the highest antifungal activity against Fusarium proliferatum, Fusarium oxysporum f. sp. cepae and Alternaria padwickii, while they had the least antagonistic effect on Fusarium verticillioides and Fusarium graminearum. Molecular identification showed that effective bacterial isolates were identified as Bacillus safensis (B2), Bacillus pumilus (B3, B11), Bacillus subtilis (B5, B7) and Bacillus megaterium (B8, B9). The highest antagonistic activity was exhibited by isolates B5 (from 39% to 62% reduction in fungal growth) and B7 (from 40% to 71% reduction in fungal growth). These isolates of B. subtilis could be used as potential biocontrol agents of plant diseases.


Author(s):  
Eva Wambacq ◽  
Kris Audenaert ◽  
Monica Höfte ◽  
Sarah De Saeger ◽  
Geert Haesaert

In Belgium, silages are often infected by Penicillium roqueforti sensu lato (s.l.). These toxigenic fungi are well adapted to silage conditions, and their prevention during feed-out is difficult. Bacillus velezensis strain NRRL B-23189 has been reported to inhibit P.&nbsp;roqueforti&nbsp;s.s. conidiospore germination in vitro by the production of lipopeptides. In the present study, the antagonistic effect of this B. velezensis strain towards P.&nbsp;roqueforti&nbsp;s.l. was evaluated in vitro and in vivo. In vitro, corn silage conditions were simulated, and the impact of B.&nbsp;velezensis culture supernatant or cell suspension on P.&nbsp;roqueforti&nbsp;s.l. growth, conidiospore germination and survival and roquefortine C production was evaluated. The antagonism was promising, but growth of B.&nbsp;velezensis in corn silage infusion was poor. An in vivo experiment with microsilos containing a mixture of perennial ryegrass and white clover artificially contaminated with P.&nbsp;roqueforti&nbsp;s.l. was carried out to determine if B.&nbsp;velezensis cell suspension could be used as an antagonistic silage inoculant. The B.&nbsp;velezensis cell suspension applied was unsuccessful in reducing P.&nbsp;roqueforti&nbsp;s.l. numbers at desiling after 56 days compared to no additive application. However, feed-out of the silage was not simulated, so it remains elusive whether or not B.&nbsp;velezensis exerts antagonistic activity during this phase.&nbsp;


2021 ◽  
Vol 26 (02) ◽  
pp. 287-293
Author(s):  
Fan Yang

Soybean root rot is a worldwide soil-borne fungal disease threatening soybean production, causing huge losses in yield and quality of soybean. Fusarium species are well recognized as the important causal agent of Fusarium root rot. To screen the beneficial Bacillus strains with capability of suppressing soybean root rot and evaluate the impact of Bacillus combined with biochar against soybean root rot, a pot experiment was conducted with different treatments. In this study, as potential biological control measures, antagonistic Bacillus isolates and different types of biochar were added to soil separately and excellent antagonistic strains mixed with bamboo biochar were applied to the soil. The results showed that seven Bacillus strains promoted the growth of soybean seedlings and reduced root rot severity by 33 to 61%. Bacillus amylolique faciens NH2 was associated with the lowest incidence of soybean root rot, indicating its bio-control potential. The value of plant height, root length and plant dry weight of soybean in the sterilized soil mixed with biochar separately treatment were superior to those of soybean in the inoculated with pathogen treatment, especially the bamboo biochar treatment reduced soybean root rot caused by Fusarium significantly and which bio-control efficacy was 77.41%. The soybean plants shoot and root dry weights in the biochar mixed B. amylolique faciens NH2 or B. subtilis DBK treatments were increased by17.1, 10.7% and 19.51, 19.64%, respectively, which were significantly higher than those of the inoculated pathogen treatment. Compared to antagonistic strain or biochar individual treatments, the disease control efficiency on soybean root rot was up to 64.86% in NH2 strain mixed with bamboo biochar treatment, which reduced root rot severity significantly and showed a synergistic effect. These results suggest that antagonistic Bacillus strains mixed with biochar can be used as an effective alternative in managing soybean root rot. © 2021 Friends Science Publishers


2021 ◽  
pp. 525-566
Author(s):  
Karl M. Effertz ◽  
◽  
Shaun J. Clare ◽  
Sarah M. Harkins ◽  
Robert S. Brueggeman ◽  
...  

An economically important disease of barley that causes significant yield and quality losses is net blotch caused by the necrotrophic fungal pathogen Pyrenophora teres. To reduce the impact of net blotch the research community is engaging in basic and applied research to enhance genetic resistances, as it is the most economic and sustainable management strategy. Durable resistance against P. teres will be a major achievement towards the goal of developing widely adapted barley varieties that have high yields and quality across dynamic environments. This chapter focuses on a thorough review of the latest knowledge of both host resistance/susceptibility and pathogen virulence/avirulence in this important pathosystem, and the implications this knowledge will have on deploying sustainable resistances to this destructive pathogen of barley.


2018 ◽  
Vol 2 (4) ◽  
pp. 196-199
Author(s):  
Matei Sorin ◽  
Matei Gabi-Mirela ◽  
Dumitrașcu Monica

Abstract Soils from rural zones with high natural value (HNV) agriculture systems are an important source of beneficial microbial species that can be useful for various biotechnological purposes, such as transfer of suppressiveness against plant pathogens from suppressive to disease-inducing soils by using inoculation with antagonistic selected strains. The main goal of the paper was to present the results of the research carried out on strains isolated from soil microbial populations in HNV agriculture system (Mureș county, Romania) responsible for specific suppressiveness against soil-borne phytopathogens. The dual culture method was used for assessing the mechanisms involved in antagonism against a plant pathogenic strain from genus Fusarium. The global microbial activity measured as soil respiration was intense. Total counts of bacteria and fungi estimated by dilution plate were also high. The community of heterotrophic aerobic bacteria included 13 species. Associations of fluorescent pseudomonads and actinomycetes were dominant and presented antagonistic activity against Fusarium. Twenty fungal species presented cellulolytic capability evidenced by growth on culture media with cellulose as sole source of carbon. Over cellulolytic capacity, the selected isolate of Trichoderma viride presented antagonistic activity against pathogenic Fusarium strain. Both biochemical mechanism and hyperparasitism were evidenced as involved in its antifungal activity.


2009 ◽  
Vol 2 (1) ◽  
pp. 45-52 ◽  
Author(s):  
K. Gromadzka ◽  
J. Chelkowski ◽  
D. Popiel ◽  
P. Kachlicki ◽  
M. Kostecki ◽  
...  

Fusarium head blight and maize ear rot are destructive diseases in various cereal production regions, leading to significant yield losses and to the contamination of cereal grain with Fusarium mycotoxins. The mycotoxin zearalenone belongs to the three most important mycotoxins produced by Fusarium species worldwide; moreover, its hormonal oestrogenic activity is higher than its toxicity. The compound also exhibits fungitoxic activity. Toxigenic Fusarium species sporulate on cereal crop residues and produce inoculum to infect the next crop. Reduction of mycotoxin production and pathogen sporulation may be influenced by saprophytic fungal antagonists. Selected Trichoderma and Clonostachys isolates in dual culture bioassays on rice reduced zearalenone, α-zearalenol and zearalenone sulphate production by two isolates of Fusarium graminearum Schwabe and two isolates of F. culmorum (W.G. Smith) Saccardo belonging to three different chemotypes, by over 97%. Two Trichoderma isolates reduced the amount of zearalenone produced by the same four Fusarium isolates by 5-83% in solid substrate bioassays, whereas several Clonostachys isolates reduced the amount of zearalenone by over 96%. Examination of the dynamics of zearalenone reduction showed that the reduction occurred at the fastest rate during the first four days of incubation. Selected non-toxigenic Trichoderma and Clonostachys isolates are candidates for biocontrol agents against toxigenic Fusarium pathogens of cereals and may be useful for decomposition of zearalenone in contaminated cereal grain and cereal products.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Massinissa Hammad ◽  
Thomas Guillemette ◽  
Meriem Alem ◽  
Franck Bastide ◽  
Meriem Louanchi

Abstract Background Grey mould caused by Botrytis cinerea Pers. (teleomorph Botryotinia fuckeliana (de Bary) Whetzel) is one of the most destructive fungal diseases of Mediterranean crops. In Algeria, few studies have been made on the economic impact of this disease. Nevertheless, it is practically present in all tomato and strawberry greenhouses, as well as in prospected vineyards in the north and south of the country. The complexity of chemical control of this disease has led to search for Trichoderma strains that are effective in biological control. Results Fifteen isolates of Trichoderma spp. were obtained from vigorous and healthy plants (tomatoes, strawberries, and vines) rhizosphere, and from a commercial bio-compost (Bio-composte®), then identified as T. afroharzianum (four isolates), T. gamsii (four isolates), T. longibrachiatum (three isolates), T. atroviride (one isolate), T. brevicompactum (one isolate), T. breve (one isolate), and T. lixii (one isolate) on the basis of DNA sequence analysis of four genes (ITS, tef1, rpb2, and acl1). In vitro biocontrol tests revealed that four Algerian isolates of Trichoderma spp. (TAtC11, TGS7, TGS10, and TBS1) had a high antagonistic activity against B. cinerea, the mycelial growth has been reduced by 62 to 65% in dual-culture technique, by 62.31 to 64.49% in volatile compounds test, and a high inhibition of germling growth was recorded by TBS1 isolate with 90.68% in Culture filtrates test. Biocontrol tests carried out on tomato plants with T. brevicompactum (TBS1), T. atroviride (TAtC11), and T. lixii (TLiC8) against B. cinerea (BCT04) showed that TBS1 inoculation significantly reduced the incidence of disease by 64.43 and 51.35% in preventive and curative treatment, respectively. Conclusion The present study revealed the first report of T. brevicompactum, T. breve, and T. lixii in Algeria, and it also contributes to the promotion of the use of native strains of Trichoderma in biological control leading to a better preservation of soil microbial diversity.


Author(s):  
Eva Wambacq ◽  
Kris Audenaert ◽  
Monica Höfte ◽  
Sarah De Saeger ◽  
Geert Haesaert

In Belgium, silages are often infected by Penicillium roqueforti sensu lato (s.l.). These toxigenic fungi are well adapted to silage conditions, and their prevention during feed-out is difficult. Bacillus velezensis strain NRRL B-23189 has been reported to inhibit P.&nbsp;roqueforti&nbsp;s.s. conidiospore germination in vitro by the production of lipopeptides. In the present study, the antagonistic effect of this B. velezensis strain towards P.&nbsp;roqueforti&nbsp;s.l. was evaluated in vitro and in vivo. In vitro, corn silage conditions were simulated, and the impact of B.&nbsp;velezensis culture supernatant or cell suspension on P.&nbsp;roqueforti&nbsp;s.l. growth, conidiospore germination and survival and roquefortine C production was evaluated. The antagonism was promising, but growth of B.&nbsp;velezensis in corn silage infusion was poor. An in vivo experiment with microsilos containing a mixture of perennial ryegrass and white clover artificially contaminated with P.&nbsp;roqueforti&nbsp;s.l. was carried out to determine if B.&nbsp;velezensis cell suspension could be used as an antagonistic silage inoculant. The B.&nbsp;velezensis cell suspension applied was unsuccessful in reducing P.&nbsp;roqueforti&nbsp;s.l. numbers at desiling after 56 days compared to no additive application. However, feed-out of the silage was not simulated, so it remains elusive whether or not B.&nbsp;velezensis exerts antagonistic activity during this phase.


2013 ◽  
Vol 5 (1) ◽  
pp. 108-117 ◽  
Author(s):  
Mamta Joshi ◽  
Rashmi Srivastava ◽  
A. K. Sharma ◽  
Anil Prakash

Collection of soil and plant samples from nine different geographical locations in Uttar Pradesh state of India was made. Composite soil was analyzed for its nutrient status. A total of sixty isolates of Fusarium species were recovered from the soil and plant samples. Among these, thirty nine isolates were identified as Fusarium oxysporum on the basis of their morphological and molecular identification. The pathogenicity test was conducted on tomato variety Pant T-3, disease incidence ranged from zero to 78.74%. Among F. oxysporum isolates, five were non pathogenic and three were found strongly pathogenic.Non-pathogenic isolates were tested for their antagonistic effect against most pathogenic isolates of F. oxysporum. The results showed that the Isolate no. 40 showed the highest antagonistic activity in inhibiting radial growth of pathogenic isolates.


2018 ◽  
Vol 8 (2) ◽  
pp. 354-364
Author(s):  
A. N. Irkitova ◽  
A. V. Grebenshchikova ◽  
A. V. Matsyura

<p>An important link in solving the problem of healthy food is the intensification of the livestock, poultry and fish farming, which is possible only in the adoption and rigorous implementation of the concept of rational feeding of animals. In the implementation of this concept required is the application of probiotic preparations. Currently, there is an increased interest in spore probiotics. In many ways, this can be explained by the fact that they use no vegetative forms of the bacilli and their spores. This property provides spore probiotics a number of advantages: they are not whimsical, easily could be selected, cultivated, and dried. Moreover, they are resistant to various factors and could remain viable during a long period. One of the most famous spore microorganisms, which are widely used in agriculture, is <em>Bacillus subtilis</em>. Among the requirements imposed to probiotic microorganisms is mandatory – antagonistic activity to pathogenic and conditional-pathogenic microflora. The article presents the results of the analysis of antagonistic activity of collection strains of <em>B. subtilis</em>, and strains isolated from commercial preparations. We studied the antagonistic activity on agar and liquid nutrient medias to trigger different antagonism mechanisms of <em>B. subtilis</em>. On agar media, we applied three diffusion methods: perpendicular bands, agar blocks, agar wells. We also applied the method of co-incubating the test culture (<em>Escherichia coli</em>) and the antagonist (or its supernatant) in the nutrient broth. Our results demonstrated that all our explored strains of <em>B. subtilis</em> have antimicrobial activity against a wild strain of <em>E. coli</em>, but to varying degrees. We identified strains of <em>B. subtilis</em> with the highest antagonistic effect that can be recommended for inclusion in microbial preparations for agriculture.</p><p><em><br /></em><em></em></p>


Sign in / Sign up

Export Citation Format

Share Document