Inhibition of Fusarium Growth and Mycotoxin Production in Culture Medium and in Maize Kernels by Natural Phenolic Acids

2016 ◽  
Vol 79 (10) ◽  
pp. 1753-1758 ◽  
Author(s):  
ELENA FERRUZ ◽  
SUSANA LORAN ◽  
MARTA HERRERA ◽  
ISABEL GIMENEZ ◽  
NOEMI BERVIS ◽  
...  

ABSTRACT The possible role of natural phenolic compounds in inhibiting fungal growth and toxin production has been of recent interest as an alternative strategy to the use of chemical fungicides for the maintenance of food safety. Fusarium is a worldwide fungal genus mainly associated with cereal crops. The most important Fusarium mycotoxins are trichothecenes, zearalenone, and fumonisins. This study was conducted to evaluate the potential of four natural phenolic acids (caffeic, ferulic, p-coumaric, and chlorogenic) for the control of mycelial growth and mycotoxin production by six toxigenic species of Fusarium. The addition of phenolic acids to corn meal agar had a marked inhibitory effect on the radial growth of all Fusarium species at levels of 2.5 to 10 mM in a dose-response pattern, causing total inhibition (100%) in all species except F. sporotrichioides and F. langsethiae. However, the effects of phenolic acids on mycotoxin production in maize kernels were less evident than the effects on growth. The fungal species differed in their responses to the phenolic acid treatments, and significant reductions in toxin concentrations were observed only for T-2 and HT-2 (90% reduction) and zearalenone (48 to 77% reduction). These results provide data that could be used for developing pre- and postharvest strategies for controlling Fusarium infection and subsequent toxin production in cereal grains.

Toxins ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 495 ◽  
Author(s):  
Kalliopi Mylona ◽  
Esther Garcia-Cela ◽  
Michael Sulyok ◽  
Angel Medina ◽  
Naresh Magan

Two garlic-derived compounds, Propyl Propane Thiosulfonate (PTS) and Propyl Propane Thiosulfinate (PTSO), were examined for their efficacy against mycotoxigenic Fusarium species (F. graminearum, F. langsethiae, F. verticillioides). The objectives were to assess the inhibitory effect of these compounds on growth and mycotoxin production in vitro, and in situ in artificially inoculated wheat, oats and maize with one isolate of each respectively, at different water activity (aw) conditions when stored for up to 20 days at 25 °C. In vitro, 200 ppm of either PTS or PTSO reduced fungal growth by 50–100% and mycotoxin production by >90% depending on species, mycotoxin and aw conditions on milled wheat, oats and maize respectively. PTS was generally more effective than PTSO. Deoxynivalenol (DON) and zearalenone (ZEN) were decreased by 50% with 80 ppm PTSO. One-hundred ppm of PTS reduced DON and ZEN production in wheat stored at 0.93 aw for 20 days, although contamination was still above the legislative limits. Contrasting effects on T-2/HT-2 toxin contamination of oats was found depending on aw, with PTS stimulating production under marginal conditions (0.93 aw), but at 0.95 aw effective control was achieved with 100 ppm. Treatment of stored maize inoculated with F. verticilliodies resulted in a stimulation of total fumonsins in most treatments. The potential use of such compounds for mycotoxin control in stored commodities is discussed.


2020 ◽  
Vol 21 (22) ◽  
pp. 8681
Author(s):  
Nicolò Orsoni ◽  
Francesca Degola ◽  
Luca Nerva ◽  
Franco Bisceglie ◽  
Giorgio Spadola ◽  
...  

As key players in biotic stress response of plants, jasmonic acid (JA) and its derivatives cover a specific and prominent role in pathogens-mediated signaling and hence are promising candidates for a sustainable management of phytopathogenic fungi. Recently, JA directed antimicrobial effects on plant pathogens has been suggested, supporting the theory of oxylipins as double gamers in plant-pathogen interaction. Based on these premises, six derivatives (dihydrojasmone and cis-jasmone, two thiosemicarbazonic derivatives and their corresponding complexes with copper) have been evaluated against 13 fungal species affecting various economically important herbaceous and woody crops, such as cereals, grapes and horticultural crops: Phaeoacremonium minimum, Neofusicoccum parvum, Phaeomoniella chlamydospora, Fomitiporia mediterranea, Fusarium poae, F. culmorum, F. graminearum, F. oxysporum f. sp. lactucae,F. sporotrichioides, Aspergillus flavus, Rhizoctonia solani,Sclerotinia spp. and Verticillium dahliae. The biological activity of these compounds was assessed in terms of growth inhibition and, for the two mycotoxigenic species A. flavus and F. sporotrichioides, also in terms of toxin containment. As expected, the inhibitory effect of molecules greatly varied amongst both genera and species; cis-jasmone thiosemicarbazone in particular has shown the wider range of effectiveness. However, our results show that thiosemicarbazones derivatives are more effective than the parent ketones in limiting fungal growth and mycotoxins production, supporting possible applications for the control of pathogenic fungi.


2020 ◽  
Vol 8 (1) ◽  
pp. 69 ◽  
Author(s):  
Marco Camardo Leggieri ◽  
Amedeo Pietri ◽  
Paola Battilani

No information is available in the literature about the influence of temperature (T) on Penicillium and Aspergillus spp. growth and mycotoxin production on cheese rinds. The aim of this work was to: (i) study fungal ecology on cheese in terms of T requirements, focusing on the partitioning of mycotoxins between the rind and mycelium; and (ii) validate predictive models previously developed by in vitro trials. Grana cheese rind blocks were inoculated with A. versicolor, P. crustosum, P. nordicum, P. roqueforti, and P. verrucosum, incubated at different T regimes (10–30 °C, step 5 °C) and after 14 days the production of mycotoxins (ochratoxin A (OTA); sterigmatocystin (STC); roquefortine C (ROQ-C), mycophenolic acid (MPA), Pr toxin (PR-Tox), citrinin (CIT), cyclopiazonic acid (CPA)) was quantified. All the fungi grew optimally around 15–25 °C and produced the expected mycotoxins (except MPA, Pr-Tox, and CIT). The majority of the mycotoxins produced remained in the mycelium (~90%) in three out of five fungal species (P. crustosum, P. nordicum, and P. roqueforti); the opposite occurred for A. versicolor and P. verrucosum with 71% and 58% of STC and OTA detected in cheese rind, respectively. Available predictive models fitted fungal growth on the cheese rind well, but validation was not possible for mycotoxins because they were produced in a very narrow T range.


2014 ◽  
Vol 4 (3) ◽  
pp. 118-126
Author(s):  
Souad Zouhair ◽  
Souad Qjidaa Qjidaa ◽  
Atar Selouane ◽  
Driss Bouya ◽  
Cony Decock ◽  
...  

Five fungicides azoxystrobin (ortiva), benomyl (benlate), hexaconazole (hexa), pyrimethanil (scala) and thiabendazole (tectocal) were tested sepa-rately in vitro for their ability to inhibit the growth of two ochratoxigenic strains of A. niger and A. carbonarius previously isolated from grapes. All fungicides effectively reduced the growth rate of A. carbonarius and A. niger from 34 to 100% at the recommended dose (RD). Thiabendazole caused total inhibition of spore germination and growth of the two strains, regardless of the doses assayed. Benomyl completely inhibited growth of A. niger whereas for A. carbonarius, concentrations above 0.02xRD were required to prevent the growth. The inhibitory effect of hexaconazole, azoxystrobin and pyrime-thanil was dose-dependent. At sub-lethal concentrations of three fungicides, a dose-dependent increase in in ochratoxin A biosynthesis by two strains was observed. The use of fungicide should be checked for its ability to inhibit fungal growth as well as for their effect in terms of mycotoxins biosynthesis.


2018 ◽  
Vol 81 (6) ◽  
pp. 898-902 ◽  
Author(s):  
BANDANA DHUNGANA ◽  
SHAUKAT ALI ◽  
EMMANUEL BYAMUKAMA ◽  
PADMANABAN KRISHNAN ◽  
MELANIE CAFFE-TREML

ABSTRACT Ochratoxin A (OTA) can cause toxicogenic effects in humans and animals when contaminated food products are consumed. Oat (Avena sativa), like any other cereal grain, can be contaminated with OTA when storage conditions are favorable for fungal growth and toxin production. South Dakota is among the leading oat-producing states in the United States. It is therefore important to determine the frequency of occurrence of the primary OTA-producing fungal species on oat grains produced in the state. In this study, we evaluated oat grain samples from South Dakota for the incidence of Penicillium verrucosum, the major ochratoxigenic fungus in temperate regions. Kernels from 12 oat cultivars grown at multiple locations in South Dakota from 2014 to 2016 (15 location-year combinations) were plated on dichloran yeast extract sucrose glycerol agar medium. P. verrucosum was detected on 0.30, 0.19, and 0.05% of the kernels tested in 2014, 2015, and 2016, respectively. Overall, 22 of the 360 evaluated samples had kernels contaminated with P. verrucosum. The fungal incidence of the contaminated samples ranged from 1 to 16%, and the majority of those samples originated from one location. All samples from 2014 and 2015 (n = 240), except two, had no detectable levels of OTA. The concentration of OTA was well under the maximum limit recommended by the European Union for the two samples with detectable levels of OTA.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1725
Author(s):  
Elisabetta Troni ◽  
Giovanni Beccari ◽  
Roberto D’Amato ◽  
Francesco Tini ◽  
David Baldo ◽  
...  

In this study, the in vitro effects of different Se concentrations (5, 10, 15, 20, and 100 mg kg−1) from different Se forms (sodium selenite, sodium selenate, selenomethionine, and selenocystine) on the development of a Fusarium proliferatum strain isolated from rice were investigated. A concentration-dependent effect was detected. Se reduced fungal growth starting from 10 mg kg−1 and increasing the concentration (15, 20, and 100 mg kg−1) enhanced the inhibitory effect. Se bioactivity was also chemical form dependent. Selenocystine was found to be the most effective at the lowest concentration (5 mg kg−1). Complete growth inhibition was observed at 20 mg kg−1 of Se from selenite, selenomethionine, and selenocystine. Se speciation analysis revealed that fungus was able to change the Se speciation when the lowest Se concentration was applied. Scanning Electron Microscopy showed an alteration of the fungal morphology induced by Se. Considering that the inorganic forms have a higher solubility in water and are cheaper than organic forms, 20 mg kg−1 of Se from selenite can be suggested as the best combination suitable to inhibit F. proliferatum strain. The addition of low concentrations of Se from selenite to conventional fungicides may be a promising alternative approach for the control of Fusarium species.


2008 ◽  
Vol 71 (11) ◽  
pp. 2213-2216 ◽  
Author(s):  
YOUSEF I. HASSAN ◽  
LLOYD B. BULLERMAN

Lactobacillus paracasei subsp. tolerans, isolated from a traditional sourdough bread culture and previously shown to have antifungal activity against Fusarium species, was tested for inhibition of growth of Fusarium proliferatum M 5991 and M 5689 and F. graminearum R 4053 in a liquid medium setting. This isolate completely inhibited the growth of F. proliferatum M 5689 and M 5991 and F. graminearum R 4053, whereas such growth was not inhibited in the control in a supernatant agar plate assay. When this isolate was tested using 2M medium (MRS–modified Myro media) known for supporting Fusarium growth and trichothecene production, it was found to inhibit fungal growth but promote mycotoxin production at the same time. The antifungal activity was determined to be the result of organic acids and low pH. The mechanism of the mycotoxin production promotion requires further investigation.


1989 ◽  
Vol 52 (10) ◽  
pp. 737-742 ◽  
Author(s):  
JOHN T. MILLS

The occurrence and development of toxigenic Fusarium species on cereal and other seeds is examined in an ecological context. Current knowledge is reviewed of factors influencing fungal growth and mycotoxin development in field and storage environments by F. sporotrichioides, F. poae, F. semitectum, F. equiseti, F. graminearum, F. culmorum, F. crookwellense, F. moniliforme, F. subglutinans, and F. oxysporum. Most ecological studies have been concerned with F. graminearum and production of deoxynivalenol and zearalenone on cereals; much more ecological information is needed on the growth and mycotoxin production by other toxigenic Fusarium species.


Diversity ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 93 ◽  
Author(s):  
Alemayehu Chala ◽  
Tulu Degefu ◽  
May Bente Brurberg

Fusarium is one of the most diverse fungal genera affecting several crops around the world. This study describes the phylogeny of Fusarium species associated with grains of sorghum and finger millet from different parts of Ethiopia. Forty-two sorghum and 34 finger millet grain samples were mycologically analysed. All of the sorghum and more than 40% of the finger millet grain samples were contaminated by the Fusarium species. The Fusarium load was higher in sorghum grains than that in finger millet grains. In addition, 67 test isolates were phylogenetically analysed using EF-1α and β-tubulin gene primers. Results revealed the presence of eight phylogenetic placements within the genus Fusarium, where 22 of the isolates showed a close phylogenetic relation to the F. incarnatum–equiseti species complex. Nevertheless, they possess a distinct shape of apical cells of macroconidia, justifying the presence of new species within the Fusarium genus. The new species was the most dominant, represented by 33% of the test isolates. The current work can be seen as an important addition to the knowledge of the biodiversity of fungal species that exists within the Fusarium genus. It also reports a previously unknown Fusarium species that needs to be investigated further for toxin production potential.


1982 ◽  
Vol 45 (6) ◽  
pp. 519-526 ◽  
Author(s):  
MARTIN D. NORTHOLT ◽  
LLOYD B. BULLERMAN

Environmental conditions influence mold growth and mycotoxin production. Such things as water activity (aw), temperature, pH and atmosphere can strongly affect and profoundly alter patterns of growth and mycotoxin production. Generally, maintenance of low temperatures will prevent aflatoxin production in stored products, whereas other toxins such as penicillic acid, patulin, zearolenone and T-2 toxin may be produced at low temperatures. Toxic Penicillium and Fusarium species are generally more capable of growth at low temperatures than are toxic species of Aspergillus. Temperature interacts with aw to influence mold growth and mycotoxin production. Aflatoxin B1 can be produced at conditions of aw and temperature which are close to the minimum aw and temperature for growth. On the other hand, patulin, penicillic acid and ochratoxin A are produced within a narrower range of aw and temperature, compared with those for growth. In fact, production of patulin and penicillic acid by Penicillium species appears to be confined to high aw values only. In optimal substrates, the minima of aw and temperature for growth and toxin production may be lower than in other substrates. It appears that pH and substrate composition have no great effect on growth of toxic molds, but may have a great influence on toxin production. Presence of CO2 and O2 influences mold growth and mycotoxin production. A 20% level of CO2 in air depresses aflatoxin production and markedly depresses mold growth. Decreasing the O2 concentration of air to 10% depresses aflatoxin production, but only at O2 levels of less than 1% are growth and aflatoxin production completely inhibited. With patulin- and sterigmatocystin-producing molds, concentrations of 40% CO2 depress growth and toxin production, but a level of 90% CO2 is needed to completely inhibit production of these toxins. Decreasing O2 concentration to 2% depresses production of patulin and sterigmatocystin but does not affect fungal growth. Only at levels down to 0.2% are growth and toxin production completely inhibited. Controlled atmospheres with increased CO2 (above 10%) and decreased O2 (2%) can be used to retard mold growth. Exclusion of O2 by vacuum packaging in materials with low O2 permeability will depress or even prevent aflatoxin production. Presence of other microorganisms may also restrict fungal growth and mycotoxin production. Aflatoxin production by Aspergillus flavus in mixed cultures with Aspergillus niger is less than in pure culture. Mixtures of fungi growing in grains and nuts in competition with A. flavus seem to prevent aflatoxin production. Other organisms including Rhizopus nigricans, Saccharomyces cerevisiae, Brevibacterium linens and some lactic acid bacteria have been shown to reduce growth and aflatoxin production by Aspergillus parasiticus. In general, mold growth and mycotoxin production can be prevented by employing various measures based on knowledge of the factors involved. Choice of the measures depends upon the type of product, storage period and available techniques.


Sign in / Sign up

Export Citation Format

Share Document