scholarly journals Radiomics for Tumor Characterization in Breast Cancer Patients: A Feasibility Study Comparing Contrast-Enhanced Mammography and Magnetic Resonance Imaging

Diagnostics ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 492
Author(s):  
Maria Adele Marino ◽  
Doris Leithner ◽  
Janice Sung ◽  
Daly Avendano ◽  
Elizabeth A. Morris ◽  
...  

The aim of our intra-individual comparison study was to investigate and compare the potential of radiomics analysis of contrast-enhanced mammography (CEM) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the breast for the non-invasive assessment of tumor invasiveness, hormone receptor status, and tumor grade in patients with primary breast cancer. This retrospective study included 48 female patients with 49 biopsy-proven breast cancers who underwent pretreatment breast CEM and MRI. Radiomics analysis was performed by using MaZda software. Radiomics parameters were correlated with tumor histology (invasive vs. non-invasive), hormonal status (HR+ vs. HR−), and grading (low grade G1 + G2 vs. high grade G3). CEM radiomics analysis yielded classification accuracies of up to 92% for invasive vs. non-invasive breast cancers, 95.6% for HR+ vs. HR− breast cancers, and 77.8% for G1 + G2 vs. G3 invasive cancers. MRI radiomics analysis yielded classification accuracies of up to 90% for invasive vs. non-invasive breast cancers, 82.6% for HR+ vs. HR− breast cancers, and 77.8% for G1+G2 vs. G3 cancers. Preliminary results indicate a potential of both radiomics analysis of DCE-MRI and CEM for non-invasive assessment of tumor-invasiveness, hormone receptor status, and tumor grade. CEM may serve as an alternative to MRI if MRI is not available or contraindicated.

Author(s):  
A. Niukkanen ◽  
H. Okuma ◽  
M. Sudah ◽  
P. Auvinen ◽  
A. Mannermaa ◽  
...  

AbstractWe aimed to assess the feasibility of three-dimensional (3D) segmentation and to investigate whether semi-quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parameters are associated with traditional prognostic factors for breast cancer. In addition, we evaluated whether both intra-tumoural and peri-tumoural DCE parameters can differentiate the breast cancers that are more aggressive from those that are less aggressive. Consecutive patients with newly diagnosed invasive breast cancer and structural breast MRI (3.0 T) were included after informed consent. Fifty-six patients (mean age, 57 years) with mass lesions of > 7 mm in diameter were included. A semi-automatic image post-processing algorithm was developed to measure 3D pharmacokinetic information from the DCE-MRI images. The kinetic parameters were extracted from time-signal curves, and the absolute tissue contrast agent concentrations were calculated with a reference tissue model. Markedly, higher intra-tumoural and peri-tumoural tissue concentrations of contrast agent were found in high-grade tumours (n = 44) compared to low-grade tumours (n = 12) at every time point (P = 0.006–0.040), providing positive predictive values of 90.6–92.6% in the classification of high-grade tumours. The intra-tumoural and peri-tumoural signal enhancement ratios correlated with tumour grade, size, and Ki67 activity. The intra-observer reproducibility was excellent. We developed a model to measure the 3D intensity data of breast cancers. Low- and high-grade tumours differed in their intra-tumoural and peri-tumoural enhancement characteristics. We anticipate that pharmacokinetic parameters will be increasingly used as imaging biomarkers to model and predict tumour behavior, prognoses, and responses to treatment.


2020 ◽  
Author(s):  
Alexey Surov ◽  
Maciej Pech ◽  
Jin You Kim ◽  
Marco Aiello ◽  
Wei Huang ◽  
...  

Abstract Background: To provide evident data regarding relationships between quantitative dynamic contrast enhanced magnetic resonance imaging (DCE MRI) and prognostic factors in breast cancer (BC).Methods: Data from 4 centers (200 female patients, mean age, 51.2 ± 11.5 years) were acquired. The following data were collected: histopathological diagnosis, tumor grade, stage, hormone receptor status, KI 67, and DCE MRI values including Ktrans (volume transfer constant), Ve (volume of the extravascular extracellular leakage space (EES) and Kep (diffusion of contrast medium from the EES back to the plasma). DCE MRI values between different groups were compared using the Mann–Whitney U test and by the Kruskal-Wallis H test. The association between DCE MRI and Ki 67 values was calculated by Spearman’s rank correlation coefficient. Results: DCE MRI values of different tumor subtypes overlapped significantly. There were no statistically significant differences of DCE MRI values between different tumor grades. All DCE MRI parameters correlated with KI 67: Ktrans, r = 0.44, p=0.0001; Ve, r = 0.34, p=0.0001; Kep, r = 0.28, p=0.002. ROC analysis identified a Ktrans threshold of 0.3 min-1 for discrimination of tumors with low KI 67 expression (<25%) and high KI 67 expression (≥25%): sensitivity, 75.5%, specificity, 73.0%, accuracy, 74.0%, AUC, 0.78. DCE MRI values overlapped between tumors with different T and N stages.Conclusion: Ktrans, Kep, and Ve cannot be used as reliable a surrogate marker for hormone receptor status, tumor stage and grade in BC. Ktrans may discriminate lesions with high and lower proliferation activity.


2018 ◽  
Vol 22 (2) ◽  
Author(s):  
Dibuseng P. Ramaema ◽  
Richard J. Hift

Background: The use of multi-parametric magnetic resonance imaging (MRI) in the evaluation of breast tuberculosis (BTB).Objectives: To evaluate the value of diffusion-weighted imaging (DWI), T2-weighted (T2W) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in differentiating breast cancer (BCA) from BTB.Method: We retrospectively studied images of 17 patients with BCA who had undergone preoperative MRI and 6 patients with pathologically proven BTB who underwent DCE-MRI during January 2014 to January 2015.Results: All patients were female, with the age range of BTB patients being 23–43 years and the BCA patients being 31–74 years. Breast cancer patients had a statistically significant lower mean apparent diffusion coefficient (ADC) value (1072.10 +/- 365.14), compared to the BTB group (1690.77 +/- 624.05, p = 0.006). The mean T2-weighted signal intensity (T2SI) was lower for the BCA group (521.56 +/- 233.73) than the BTB group (787.74 +/- 196.04, p = 0.020). An ADC mean cut-off value of 1558.79 yielded 66% sensitivity and 94% specificity, whilst the T2SI cut-off value of 790.20 yielded 83% sensitivity and 83% specificity for differentiating between BTB and BCA. The homogeneous internal enhancement for focal mass was seen in BCA patients only.Conclusion: Multi-parametric MRI incorporating the DWI, T2W and DCE-MRI may be a useful tool to differentiate BCA from BTB.


2020 ◽  
Vol 9 (6) ◽  
pp. 1853
Author(s):  
Doris Leithner ◽  
Marius E. Mayerhoefer ◽  
Danny F. Martinez ◽  
Maxine S. Jochelson ◽  
Elizabeth A. Morris ◽  
...  

We evaluated the performance of radiomics and artificial intelligence (AI) from multiparametric magnetic resonance imaging (MRI) for the assessment of breast cancer molecular subtypes. Ninety-one breast cancer patients who underwent 3T dynamic contrast-enhanced (DCE) MRI and diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping were included retrospectively. Radiomic features were extracted from manually drawn regions of interest (n = 704 features per lesion) on initial DCE-MRI and ADC maps. The ten best features for subtype separation were selected using probability of error and average correlation coefficients. For pairwise comparisons with >20 patients in each group, a multi-layer perceptron feed-forward artificial neural network (MLP-ANN) was used (70% of cases for training, 30%, for validation, five times each). For all other separations, linear discriminant analysis (LDA) and leave-one-out cross-validation were applied. Histopathology served as the reference standard. MLP-ANN yielded an overall median area under the receiver-operating-characteristic curve (AUC) of 0.86 (0.77–0.92) for the separation of triple negative (TN) from other cancers. The separation of luminal A and TN cancers yielded an overall median AUC of 0.8 (0.75–0.83). Radiomics and AI from multiparametric MRI may aid in the non-invasive differentiation of TN and luminal A breast cancers from other subtypes.


2021 ◽  
Vol 1 ◽  
Author(s):  
David E. Frankhouser ◽  
Eric Dietze ◽  
Ashish Mahabal ◽  
Victoria L. Seewaldt

Angiogenesis is a key step in the initiation and progression of an invasive breast cancer. High microvessel density by morphological characterization predicts metastasis and poor survival in women with invasive breast cancers. However, morphologic characterization is subject to variability and only can evaluate a limited portion of an invasive breast cancer. Consequently, breast Magnetic Resonance Imaging (MRI) is currently being evaluated to assess vascularity. Recently, through the new field of radiomics, dynamic contrast enhanced (DCE)-MRI is being used to evaluate vascular density, vascular morphology, and detection of aggressive breast cancer biology. While DCE-MRI is a highly sensitive tool, there are specific features that limit computational evaluation of blood vessels. These include (1) DCE-MRI evaluates gadolinium contrast and does not directly evaluate biology, (2) the resolution of DCE-MRI is insufficient for imaging small blood vessels, and (3) DCE-MRI images are very difficult to co-register. Here we review computational approaches for detection and analysis of blood vessels in DCE-MRI images and present some of the strategies we have developed for co-registry of DCE-MRI images and early detection of vascularization.


Breast Care ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 224-229 ◽  
Author(s):  
Dominique J.P. van Uden ◽  
J. Hans W. de Wilt ◽  
Carla Meeuwis ◽  
Charlotte F.J.M. Blanken-Peeters ◽  
Ritse M. Mann

Background: The aim of this study was to describe the dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) features of inflammatory breast cancer (IBC) and to assess the value of DCE-MRI for the prediction of pathological complete response (pCR). Methods: Image analysis was performed in 15 patients with IBC (cT4d) and 12 patients with non-IBC (cT2), and included the assessment of BIRADS characteristics, skin alterations, enhancement characteristics, and changes post chemotherapy. Sensitivity and specificity of DCE-MRI for the presence of residual disease were obtained. Pearson's correlation coefficients were calculated comparing the (preoperative) tumor size with the histological size. Results: Skin thickening/enhancement (80%) and non-mass-like enhancement (66.7%) occurred more often in IBC (16.7 vs. 8.3% in non-IBC). In 2 of 3 cases of IBC, pCR was correctly predicted (sensitivity 92%, specificity 67%), compared to 3 of 5 cases in non-IBC (sensitivity 86%, specificity 40%). Lower peak enhancement might be associated with a higher likelihood of pCR in IBC. No other parameters predicted eventual pCR. In IBC, no correlation between preoperative tumor size and histological size was found (r = 0.22, p = 0.50), whereas in non-IBC, size estimations were more accurate (r = 0.75, p = 0.03). Conclusion: IBC is characterized on MRI by skin changes and non-mass-like enhancement. Radiological complete response seems indicative of pCR in IBC and non-IBC. Size estimation of residual disease in IBC appears to be inaccurate.


2021 ◽  
Vol 11 (4) ◽  
pp. 1880
Author(s):  
Roberta Fusco ◽  
Adele Piccirillo ◽  
Mario Sansone ◽  
Vincenza Granata ◽  
Paolo Vallone ◽  
...  

Purpose: The aim of the study was to estimate the diagnostic accuracy of textural, morphological and dynamic features, extracted by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) images, by carrying out univariate and multivariate statistical analyses including artificial intelligence approaches. Methods: In total, 85 patients with known breast lesion were enrolled in this retrospective study according to regulations issued by the local Institutional Review Board. All patients underwent DCE-MRI examination. The reference standard was pathology from a surgical specimen for malignant lesions and pathology from a surgical specimen or fine needle aspiration cytology, core or Tru-Cut needle biopsy for benign lesions. In total, 91 samples of 85 patients were analyzed. Furthermore, 48 textural metrics, 15 morphological and 81 dynamic parameters were extracted by manually segmenting regions of interest. Statistical analyses including univariate and multivariate approaches were performed: non-parametric Wilcoxon–Mann–Whitney test; receiver operating characteristic (ROC), linear classifier (LDA), decision tree (DT), k-nearest neighbors (KNN), and support vector machine (SVM) were utilized. A balancing approach and feature selection methods were used. Results: The univariate analysis showed low accuracy and area under the curve (AUC) for all considered features. Instead, in the multivariate textural analysis, the best performance (accuracy (ACC) = 0.78; AUC = 0.78) was reached with all 48 metrics and an LDA trained with balanced data. The best performance (ACC = 0.75; AUC = 0.80) using morphological features was reached with an SVM trained with 10-fold cross-variation (CV) and balanced data (with adaptive synthetic (ADASYN) function) and a subset of five robust morphological features (circularity, rectangularity, sphericity, gleaning and surface). The best performance (ACC = 0.82; AUC = 0.83) using dynamic features was reached with a trained SVM and balanced data (with ADASYN function). Conclusion: Multivariate analyses using pattern recognition approaches, including all morphological, textural and dynamic features, optimized by adaptive synthetic sampling and feature selection operations obtained the best results and showed the best performance in the discrimination of benign and malignant lesions.


Sign in / Sign up

Export Citation Format

Share Document