scholarly journals Novel Multimodal, Multiscale Imaging System with Augmented Reality

Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 441
Author(s):  
Christopher Mela ◽  
Francis Papay ◽  
Yang Liu

A novel multimodal, multiscale imaging system with augmented reality capability were developed and characterized. The system offers 3D color reflectance imaging, 3D fluorescence imaging, and augmented reality in real time. Multiscale fluorescence imaging was enabled by developing and integrating an in vivo fiber-optic microscope. Real-time ultrasound-fluorescence multimodal imaging used optically tracked fiducial markers for registration. Tomographical data are also incorporated using optically tracked fiducial markers for registration. Furthermore, we characterized system performance and registration accuracy in a benchtop setting. The multiscale fluorescence imaging facilitated assessing the functional status of tissues, extending the minimal resolution of fluorescence imaging to ~17.5 µm. The system achieved a mean of Target Registration error of less than 2 mm for registering fluorescence images to ultrasound images and MRI-based 3D model, which is within clinically acceptable range. The low latency and high frame rate of the prototype system has shown the promise of applying the reported techniques in clinically relevant settings in the future.

Author(s):  
Zhen Liu ◽  
Tao Cheng ◽  
Stephan Düwel ◽  
Ziying Jian ◽  
Geoffrey J. Topping ◽  
...  

Abstract Background Transpathology highlights the interpretation of the underlying physiology behind molecular imaging. However, it remains challenging due to the discrepancies between in vivo and in vitro measurements and difficulties of precise co-registration between trans-scaled images. This study aims to develop a multimodal intravital molecular imaging (MIMI) system as a tool for in vivo tumour transpathology investigation. Methods The proposed MIMI system integrates high-resolution positron imaging, magnetic resonance imaging (MRI) and microscopic imaging on a dorsal skin window chamber on an athymic nude rat. The window chamber frame was designed to be compatible with multimodal imaging and its fiducial markers were customized for precise physical alignment among modalities. The co-registration accuracy was evaluated based on phantoms with thin catheters. For proof of concept, tumour models of the human colorectal adenocarcinoma cell line HT-29 were imaged. The tissue within the window chamber was sectioned, fixed and haematoxylin–eosin (HE) stained for comparison with multimodal in vivo imaging. Results The final MIMI system had a maximum field of view (FOV) of 18 mm × 18 mm. Using the fiducial markers and the tubing phantom, the co-registration errors are 0.18 ± 0.27 mm between MRI and positron imaging, 0.19 ± 0.22 mm between positron imaging and microscopic imaging and 0.15 ± 0.27 mm between MRI and microscopic imaging. A pilot test demonstrated that the MIMI system provides an integrative visualization of the tumour anatomy, vasculatures and metabolism of the in vivo tumour microenvironment, which was consistent with ex vivo pathology. Conclusions The established multimodal intravital imaging system provided a co-registered in vivo platform for trans-scale and transparent investigation of the underlying pathology behind imaging, which has the potential to enhance the translation of molecular imaging.


2020 ◽  
Vol 13 (6) ◽  
pp. 512-521
Author(s):  
Mohamed Taha ◽  
◽  
Mohamed Ibrahim ◽  
Hala Zayed ◽  
◽  
...  

Vein detection is an important issue for the medical field. There are some commercial devices for detecting veins using infrared radiation. However, most of these commercial solutions are cost-prohibitive. Recently, veins detection has attracted much attention from research teams. The main focus is on developing real-time systems with low-cost hardware. Systems developed to reduce costs suffer from low frame rates. This, in turn, makes these systems not suitable for real-world applications. On the other hand, systems that use powerful processors to produce high frame rates suffer from high costs and a lack of mobility. In this paper, a real-time vein mapping prototype using augmented reality is proposed. The proposed prototype provides a compromised solution to produce high frame rates with a low-cost system. It consists of a USB camera attached to an Android smartphone used for real-time detection. Infrared radiation is employed to differentiate the veins using 20 Infrared Light Emitting Diodes (LEDs). The captured frames are processed to enhance vein detection using light computational algorithms to improve real-time processing and increase frame rate. Finally, the enhanced view of veins appears on the smartphone screen. Portability and economic cost are taken into consideration while developing the proposed prototype. The proposed prototype is tested with people of different ages and gender, as well as using mobile devices of different specifications. The results show a high vein detection rate and a high frame rate compared to other existing systems.


2009 ◽  
Vol 14 (6) ◽  
pp. 064012 ◽  
Author(s):  
George Themelis ◽  
Jung Sun Yoo ◽  
Kwang-Sup Soh ◽  
Ralf Schulz ◽  
Vasilis Ntziachristos

2020 ◽  
Vol 19 ◽  
pp. 153601212093496
Author(s):  
Adrian Rosenberg ◽  
Daiki Fujimura ◽  
Ryuhei Okada ◽  
Aki Furusawa ◽  
Fuyuki Inagaki ◽  
...  

Background: Near-infrared photoimmunotherapy (NIR-PIT) is a cancer therapy that causes an increase in tumor perfusion, a phenomenon termed the super-enhanced permeability and retention effect. Currently, in vivo treatment efficacy of NIR-PIT is observable days after treatment, but monitoring would be improved by more acute detection of intratumor change. Fluorescence imaging may detect increased tumor perfusion immediately after treatment. Methods: In the first experiment, athymic nude mouse models bearing unilateral subcutaneous flank tumors were treated with either NIR-PIT or laser therapy only. In the second experiment, mice bearing bilateral flank tumors were treated with NIR-PIT only on the left-sided tumor. In both groups, immediately after treatment, indocyanine green was injected at different doses intravenously, and mice were monitored with the Shimadzu LIGHTVISION fluorescence imaging system for 1 hour. Results: Tumor-to-background ratio of fluorescence intensity increased over the 60 minutes of monitoring in treated mice but did not vary significantly in control mice. Tumor-to-background ratio was highest in the 1 mg kg−1 and 0.3 mg kg−1 doses. In mice with bilateral tumors, tumor-to-untreated tumor ratio increased similarly. Conclusions: Acute changes in tumor perfusion after NIR-PIT can be detected by real-time fluorescence imaging.


2016 ◽  
Vol 7 (7) ◽  
pp. 2565 ◽  
Author(s):  
Danni Ai ◽  
Jian Yang ◽  
Jingfan Fan ◽  
Yitian Zhao ◽  
Xianzheng Song ◽  
...  

2000 ◽  
Author(s):  
Arjen Bogaards ◽  
Armand J. L. Jongen ◽  
Erwin Dekker ◽  
J. Hanneke T. M. van den Akker ◽  
Hericus J. C. M. Sterenborg

Author(s):  
Yuzhu Lu ◽  
Shana Smith

In this paper, we present a prototype system, which uses CAVE-based virtual reality to enhance immersion in an augmented reality environment. The system integrates virtual objects into a real scene captured by a set of stereo remote cameras. We also present a graphic processing unit (GPU)-based method for computing occlusion between real and virtual objects in real time. The method uses information from the captured stereo images to determine depth of objects in the real scene. Results and performance comparisons show that the GPU-based method is much faster than prior CPU-based methods.


Sign in / Sign up

Export Citation Format

Share Document