scholarly journals Second Law Analysis of Spectral Radiative Transfer and Calculation in One-Dimensional Furnace Cases

Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 461 ◽  
Author(s):  
Shiquan Shan ◽  
Zhijun Zhou

This study combines the radiation transfer process with the thermodynamic second law to achieve more accurate results for the energy quality and its variability in the spectral radiation transfer process. First, the core ideas of the monochromatic photon exergy theory based on the equivalent temperature and the infinite-staged Carnot model are reviewed and discussed. Next, this theory is combined with the radiation transfer equation and thus the spectral radiative entropy and the radiative exergy transfer equations are established and verified based on the second law of thermodynamics. Finally, one-dimensional furnace case calculations are performed to determine the applicability to engineering applications. It is found that the distribution and variability of the spectral radiative exergy flux in the radiation transfer process can be obtained using numerical calculations and the scatter media could slightly improve the proportion of short-wavelength radiative exergy during the radiation transfer process. This has application value for research on flame energy spectrum-splitting conversion systems.

Author(s):  
B. B. Sahoo ◽  
U. K. Saha ◽  
N. Sahoo ◽  
P. Prusty

The fuel efficiency of a modern diesel engine has decreased due to the recent revisions to emission standards. For an engine fuel economy, the engine speed is to be optimum for an exact throttle opening (TO) position. This work presents an analysis of throttle opening variation impact on a multi-cylinder, direct injection diesel engine with the aid of Second Law of thermodynamics. For this purpose, the engine is run for different throttle openings with several load and speed variations. At a steady engine loading condition, variation in the throttle openings has resulted in different engine speeds. The Second Law analysis, also called ‘Exergy’ analysis, is performed for these different engine speeds at their throttle positions. The Second Law analysis includes brake work, coolant heat transfer, exhaust losses, exergy efficiency, and airfuel ratio. The availability analysis is performed for 70%, 80%, and 90% loads of engine maximum power condition with 50%, 75%, and 100% TO variations. The data are recorded using a computerized engine test unit. Results indicate that the optimum engine operating conditions for 70%, 80% and 90% engine loads are 2000 rpm at 50% TO, 2300 rpm at 75% TO and 3250 rpm at 100% TO respectively.


1981 ◽  
Vol 103 (1) ◽  
pp. 23-28 ◽  
Author(s):  
A. Bejan ◽  
D. W. Kearney ◽  
F. Kreith

The second law of thermodynamics is used to analyze the potential for exergy conservation in solar collector systems. It is shown that the amount of useful energy (exergy) delivered by solar collector systems is affected by heat transfer irreversibilities occurring between the sun and the collector, between the collector and the ambient air, and inside the collector. Using as working examples an isothermal collector, a nonisothermal collector, and the design of the collector-user heat exchanger, the optimum operating conditions for minimum heat transfer irreversibility (maximum exergy delivery) are derived.


2011 ◽  
Vol 33 (4) ◽  
pp. 3-21 ◽  
Author(s):  
Andrzej Ziębik

Abstract Basing on the first and second law of thermodynamics the fundamental trends in the Polish energy policy are analysed, including the aspects of environmental protection. The thermodynamical improvement of real processes (reduction of exergy losses) is the main way leading to an improvement of the effectivity of energy consumption. If the exergy loss is economically not justified, we have to do with an error from the viewpoint of the second law analysis. The paper contains a thermodynamical analysis of the ratio of final and primary energy, as well as the analysis of the thermo-ecological cost and index of sustainable development concerning primary energy. Analyses of thermo-ecological costs concerning electricity and centralized heat production have been also carried out. The effect of increasing the share of high-efficiency cogeneration has been analyzed, too. Attention has been paid to an improved efficiency of the transmission and distribution of electricity, which is of special importance from the viewpoint of the second law analysis. The improvement of the energy effectivity in industry was analyzed on the example of physical recuperation, being of special importance from the point of view of exergy analysis.


1994 ◽  
Vol 61 (1) ◽  
pp. 71-76 ◽  
Author(s):  
V. K. Kinra ◽  
K. B. Milligan

In accordance with the Thomson effect (Thomson, 1853), when a thermoelastic solid is subjected to a tensile stress, it cools. Similarly, when a homogeneous material is subjected to an inhomogeneous stress field or when an heterogeneous material is subjected to any stress field (homogeneous or inhomogeneous), different parts of the material undergo different temperature changes. As a result irreversible heat conduction occurs and entropy is produced. In this paper we take the second law of thermodynamics as our starting point and develop a general theory for calculating the thermoelastic damping from the entropy produced.


2019 ◽  
Vol 142 (6) ◽  
Author(s):  
Gabriel L. Verissimo ◽  
Manuel E. Cruz ◽  
Albino J. K. Leiroz

Abstract In the present work, the transport equations for mass, momentum, energy, and chemical species as given by the Euler–Euler formulation for multiphase flows are used together with the second law of thermodynamics to derive the entropy and exergy transport equations, suitable to the study of gas-particle reactive flows, such as those observed during pyrolysis, gasification, and combustion of biomass particles. The terms of the derived equations are discussed, and the exergy destruction contributions are identified. Subsequently, a kinetic model is implemented in a computational fluid dynamics (CFD) open source code for the sugarcane bagasse gasification. Then, the derived exergy destruction terms are implemented numerically through user-defined Fortran routines. Next, the second law analysis of the gasification process of sugarcane bagasse in bubbling fluidized beds is carried out. Detailed results are obtained for the local destructions of exergy along the reactor. This information is important to help improve environmental and sustainable practices and should be of interest to both designers and operators of fluidized bed equipment.


Author(s):  
Tomas Grönstedt ◽  
Mohammad Irannezhad ◽  
Xu Lei ◽  
Oskar Thulin ◽  
Anders Lundbladh

An optimal baseline turbofan cycle designed for a performance level expected to be available around year 2050 is established. Detailed performance data are given in take-off, top of climb, and cruise to support the analysis. The losses are analyzed, based on a combined use of the first and second law of thermodynamics, in order to establish a basis for a discussion on future radical engine concepts and to quantify loss levels of very high performance engines. In light of the performance of the future baseline engine, three radical cycles designed to reduce the observed major loss sources are introduced. The combined use of a first and second law analysis of an open rotor engine, an intercooled recuperated engine, and an engine working with a pulse detonation combustion core is presented. In the past, virtually no attention has been paid to the systematic quantification of the irreversibility rates of such radical concepts. Previous research on this topic has concentrated on the analysis of the turbojet and the turbofan engine. In the developed framework, the irreversibility rates are quantified through the calculation of the exergy destruction per unit time. A striking strength of the analysis is that it establishes a common currency for comparing losses originating from very different physical sources of irreversibility. This substantially reduces the complexity of analyzing and comparing losses in aero engines. In particular, the analysis sheds new light on how the intercooled recuperated engine establishes its performance benefits.


Sign in / Sign up

Export Citation Format

Share Document