scholarly journals Knudsen Number Effects on Two-Dimensional Rayleigh–Taylor Instability in Compressible Fluid: Based on a Discrete Boltzmann Method

Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 500 ◽  
Author(s):  
Haiyan Ye ◽  
Huilin Lai ◽  
Demei Li ◽  
Yanbiao Gan ◽  
Chuandong Lin ◽  
...  

Based on the framework of our previous work [H.L. Lai et al., Phys. Rev. E, 94, 023106 (2016)], we continue to study the effects of Knudsen number on two-dimensional Rayleigh–Taylor (RT) instability in compressible fluid via the discrete Boltzmann method. It is found that the Knudsen number effects strongly inhibit the RT instability but always enormously strengthen both the global hydrodynamic non-equilibrium (HNE) and thermodynamic non-equilibrium (TNE) effects. Moreover, when Knudsen number increases, the Kelvin–Helmholtz instability induced by the development of the RT instability is difficult to sufficiently develop in the later stage. Different from the traditional computational fluid dynamics, the discrete Boltzmann method further presents a wealth of non-equilibrium information. Specifically, the two-dimensional TNE quantities demonstrate that, far from the disturbance interface, the value of TNE strength is basically zero; the TNE effects are mainly concentrated on both sides of the interface, which is closely related to the gradient of macroscopic quantities. The global TNE first decreases then increases with evolution. The relevant physical mechanisms are analyzed and discussed.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Changsheng Dou ◽  
Jialiang Wang ◽  
Weiwei Wang

AbstractWe investigate the effect of (interface) surface tensor on the linear Rayleigh–Taylor (RT) instability in stratified incompressible viscous fluids. The existence of linear RT instability solutions with largest growth rate Λ is proved under the instability condition (i.e., the surface tension coefficient ϑ is less than a threshold $\vartheta _{\mathrm{c}}$ ϑ c ) by the modified variational method of PDEs. Moreover, we find a new upper bound for Λ. In particular, we directly observe from the upper bound that Λ decreasingly converges to zero as ϑ goes from zero to the threshold $\vartheta _{\mathrm{c}}$ ϑ c .


Author(s):  
Jae-Min Jeong ◽  
Se Bin Jin ◽  
Seon Gyu Son ◽  
Hoyoung Suh ◽  
Jong-Min Moon ◽  
...  

2D FeIII nanosheets are synthesized by a fluid dynamics–assisted exfoliation and oxidation method for highly-catalyzed glycolysis reaction of PET.


Author(s):  
Sunita Kruger ◽  
Leon Pretorius

In this paper, the influence of various bench arrangements on the microclimate inside a two-span greenhouse is numerically investigated using three-dimensional Computational Fluid Dynamics (CFD) models. Longitudinal and peninsular arrangements are investigated for both leeward and windward opened roof ventilators. The velocity and temperature distributions at plant level (1m) were of particular interest. The research in this paper is an extension of two-dimensional work conducted previously [1]. Results indicate that bench layouts inside the greenhouse have a significant effect on the microclimate at plant level. It was found that vent opening direction (leeward or windward) influences the velocity and temperature distributions at plant level noticeably. Results also indicated that in general, the leeward facing greenhouses containing either type of bench arrangement exhibit a lower velocity distribution at plant level compared to windward facing greenhouses. The latter type of greenhouses has regions with relatively high velocities at plant level which could cause some concern. The scalar plots indicate that more stagnant areas of low velocity appear for the leeward facing greenhouses. The windward facing greenhouses also display more heterogeneity at plant level as far as temperature is concerned.


Sign in / Sign up

Export Citation Format

Share Document