scholarly journals Frictional Wear and Corrosion Behavior of AlCoCrFeNi High-Entropy Alloy Coatings Synthesized by Atmospheric Plasma Spraying

Entropy ◽  
2020 ◽  
Vol 22 (7) ◽  
pp. 740
Author(s):  
Yongkun Mu ◽  
Liangbo Zhang ◽  
Long Xu ◽  
Kondagokuldoss Prashanth ◽  
Nizhen Zhang ◽  
...  

High-entropy alloy coatings (HEAC) exhibit good frictional wear and corrosion resistances, which are of importance for structure materials. In this study, the microstructure, surface morphology, hardness, frictional wear and corrosion resistance of an AlCoCrFeNi high-entropy alloy coating synthesized by atmospheric plasma spraying (APS) were investigated. The frictional wear and corrosion resistance of the coating are simultaneously improved with an increase of the power of APS. The influence of the APS process on the microstructure and mechanical behavior is elucidated. The mechanisms of frictional wear and corrosion behavior of the AlCoCrFeNi HEAC are discussed in detail.

Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 373 ◽  
Author(s):  
Yiku Xu ◽  
Zhiyuan Li ◽  
Jianru Liu ◽  
Yongnan Chen ◽  
Fengying Zhang ◽  
...  

High-entropy alloy (HEA) coatings of CoCrFeNiTiAlx (x = 0, 0.5, 1, 1.5, 2) were prepared on the surface of AISI1045 steel by laser cladding. The effects of the Al content on the microstructure, composition, phase constitution, and wear and corrosion resistance of the coatings were investigated. The results showed that when increasing the Al element content from 0 to 0.5, the phase constitution of the CoCrFeNiTiAlx coating changed from a single Face-centered cubic (FCC) phase to Body-centered cubic 1 (BCC1) and Body-centered cubic 2 (BCC2) phases, with a small amount of Laves phase, which obviously improved the friction and corrosion resistance of the coating. With further enhancing of the Al content, the amount of BCC1 phase increased, while the BCC2 phase and the Laves phase decreased. The CoCrFeNiTiAl2 HEA coating transformed into a single BCC1 phase, with retrogressive wear and corrosion resistance. It was found that the Al0.5 alloy coating exhibits excellent wear resistance, high hardness, and corrosion resistance in a 3.5 wt.% NaCl solution. Furthermore, the effect of the Al content on the microstructure, phase, and the relating properties of the CoCrFeNiTiAlx HEA coatings is also discussed.


Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 915 ◽  
Author(s):  
Kaijin Huang ◽  
Lin Chen ◽  
Xin Lin ◽  
Haisong Huang ◽  
Shihao Tang ◽  
...  

In order to improve the wear and corrosion resistance of an AZ91D magnesium alloy substrate, an Al0.5CoCrCuFeNi high-entropy alloy coating was successfully prepared on an AZ91D magnesium alloy surface by laser cladding using mixed elemental powders. Optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction were used to characterize the microstructure of the coating. The wear resistance and corrosion resistance of the coating were evaluated by dry sliding wear and potentiodynamic polarization curve test methods, respectively. The results show that the coating was composed of a simple FCC solid solution phase with a microhardness about 3.7 times higher than that of the AZ91D matrix and even higher than that of the same high-entropy alloy prepared by an arc melting method. The coating had better wear resistance than the AZ91D matrix, and the wear rate was about 2.5 times lower than that of the AZ91D matrix. Moreover, the main wear mechanisms of the coating and the AZ91D matrix were different. The former was abrasive wear and the latter was adhesive wear. The corrosion resistance of the coating was also better than that of the AZ91D matrix because the corrosion potential of the former was more positive and the corrosion current was smaller.


2019 ◽  
Vol 7 (8) ◽  
pp. 312-319 ◽  
Author(s):  
Y.K. Mu ◽  
Y.D. Jia ◽  
L. Xu ◽  
Y.F. Jia ◽  
X.H. Tan ◽  
...  

2021 ◽  
Vol 3 (11) ◽  
Author(s):  
L. Chmielak ◽  
L. Mujica Roncery ◽  
P. Niederhofer ◽  
S. Weber ◽  
W. Theisen

AbstractThe use of interstitial elements has been a key factor for the development of different kinds of steels. However, this aspect has been little explored in the field of high entropy alloys (HEAs). In this investigation, the effect of carbon and nitrogen in a near-equiatomic CrMnFeCoNi HEA is studied, analyzing their impact on the microstructure, and mechanical properties from 77K to 673K, as well as wear, and corrosion resistance. Carbon and nitrogen are part of the FCC solid solution and contribute to the formation of precipitates. An increase in the yield and ultimate tensile strength accompanied with a decrease in the ductility are the main effects of C and N. The impact toughness of the interstitial-free material is higher than that of C and C+N alloyed systems. Compared to CrNi and CrMn austenitic steels, the wear resistance of the alloys at room temperature is rather low. The surface corrosion resistance of HEAs is comparable to austenitic steels; nevertheless HEAs are more susceptible to pitting in chloride containing solutions.


2015 ◽  
Vol 819 ◽  
pp. 87-90 ◽  
Author(s):  
Zakiah Kamdi ◽  
C.Y. Phang ◽  
H. Ahmad

Metal-ceramic composite or cermet coatings have become popular due to their enhanced wear and corrosion resistance properties. Cermet consists of ceramic particulate embedded in a metallic binder. WC-Co coatings are often used in applications that require wear resistance, but there are many applications in which thermally sprayed coatings have been deposited on components that operate under both abrasive and corrosive condition. Thus, in this study, the corrosion behavior of WC-12wt%Co in different electrolyte has been evaluated. Electrochemical test has been done in three electrolytes namely 0.5 M hydrochloric acid, HCl, 0.5 M sulfuric acid, H2SO4 and 0.5 M sodium hydroxide, NaOH. It is found that corrosion potential of this coating in acidic environment is more positive compares to in alkaline environment. Both in acid and alkaline electrolyte, binder dissolution were preferential. It may be concluded that this coating have higher corrosion resistance in alkaline electrolyte than in acid electrolyte.


Sign in / Sign up

Export Citation Format

Share Document