scholarly journals Exploring the Possibility of a Recovery of Physics Process Properties from a Neural Network Model

Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 994
Author(s):  
Marko Jercic ◽  
Nikola Poljak

The application of machine learning methods to particle physics often does not provide enough understanding of the underlying physics. An interpretable model which provides a way to improve our knowledge of the mechanism governing a physical system directly from the data can be very useful. In this paper, we introduce a simple artificial physical generator based on the Quantum chromodynamical (QCD) fragmentation process. The data simulated from the generator are then passed to a neural network model which we base only on the partial knowledge of the generator. We aimed to see if the interpretation of the generated data can provide the probability distributions of basic processes of such a physical system. This way, some of the information we omitted from the network model on purpose is recovered. We believe this approach can be beneficial in the analysis of real QCD processes.

2021 ◽  
Vol 21 (2) ◽  
pp. 143-153
Author(s):  
Р. V. Vasiliev ◽  
А. V. Senichev ◽  
I. Giorgio

Introduction. The development of machine learning methods has given a new impulse to solving inverse problems in mechanics. Many studies show that along with well-behaved techniques of ultrasonic, magnetic, and thermal nondestructive testing, the latest methods are used, including those based on neural network models. In this paper, we demonstrate the potential application of machine learning methods in the problem of two-dimensional ultrasound imaging. Materials and Methods. We have developed an experimental model of acoustic ultrasonic non-destructive testing, in which the probing of the object under study takes place, followed by the recording of the response signals. The propagation of an ultrasonic wave is modeled by the finite difference method in the time domain. An ultrasonic signal received at the internal points of the control object is applied to the input of the convolutional neural network. At the output, an image that visualizes the internal defect is generated.Results. In the course of the performed complex of numerical experiments, a data set was generated for training a convolutional neural network. A convolutional neural network model, which is developed to solve the problem of visualizing internal defects based on methods of ultrasonic nondestructive testing, is presented. This model has a small size, which is 3.8 million parameters. Its simplicity and versatility provide high-speed learning and a wide range of applications in the class of related problems. The presented results show a high degree of information content of the ultrasonic response and its correspondence to the real form of an internal defect located inside the test object. The effect of geometric parameters of defects on the accuracy of the neural network model is investigated.Discussion and Conclusion. The results obtained have established that the proposed model shows a high operating accuracy (F1 > 0.95) in cases when the wavelength of the probe pulse is tens of times less than the size of the defect. We believe that the combination of the proposed methods in this approach can serve as a good starting point for future research in solving flaw defection problems and inverse problems in general. 


Georesursy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 79-85
Author(s):  
Anatoliy N. Dmitrievsky ◽  
Alexander G. Sboev ◽  
Nikolai A. Eremin ◽  
Alexander D. Chernikov ◽  
Aleksandr V. Naumov ◽  
...  

The article is devoted to the development of a hybrid method for predicting and preventing the development of troubles in the process of drilling wells based on machine learning methods and modern neural network models. Troubles during the drilling process, such as filtrate leakoff; gas, oil and water shows and sticking, lead to an increase in unproductive time, i.e. time that is not technically necessary for well construction and is caused by various violations of the production process. Several different approaches have been considered, including based on the regression model for predicting the indicator function, which reflects an approach to a developing trouble, as well as anomaly extraction models built both on basic machine learning algorithms and using the neural network model of deep learning. Showing visualized examples of the work of the developed methods on simulation and real data. Intelligent analysis of Big Geodata from geological and technological measurement stations is based on well-proven machine learning algorithms. Based on these data, a neural network model was proposed to prevent troubles and emergencies during the construction of wells. The use of this method will minimize unproductive drilling time.


2020 ◽  
Vol 8 (10) ◽  
pp. 766
Author(s):  
Dohan Oh ◽  
Julia Race ◽  
Selda Oterkus ◽  
Bonguk Koo

Mechanical damage is recognized as a problem that reduces the performance of oil and gas pipelines and has been the subject of continuous research. The artificial neural network in the spotlight recently is expected to be another solution to solve the problems relating to the pipelines. The deep neural network, which is on the basis of artificial neural network algorithm and is a method amongst various machine learning methods, is applied in this study. The applicability of machine learning techniques such as deep neural network for the prediction of burst pressure has been investigated for dented API 5L X-grade pipelines. To this end, supervised learning is employed, and the deep neural network model has four layers with three hidden layers, and the neural network uses the fully connected layer. The burst pressure computed by deep neural network model has been compared with the results of finite element analysis based parametric study, and the burst pressure calculated by the experimental results. According to the comparison results, it showed good agreement. Therefore, it is concluded that deep neural networks can be another solution for predicting the burst pressure of API 5L X-grade dented pipelines.


2021 ◽  
Vol 72 (1) ◽  
pp. 11-20
Author(s):  
Mingtao He ◽  
Wenying Li ◽  
Brian K. Via ◽  
Yaoqi Zhang

Abstract Firms engaged in producing, processing, marketing, or using lumber and lumber products always invest in futures markets to reduce the risk of lumber price volatility. The accurate prediction of real-time prices can help companies and investors hedge risks and make correct market decisions. This paper explores whether Internet browsing habits can accurately nowcast the lumber futures price. The predictors are Google Trends index data related to lumber prices. This study offers a fresh perspective on nowcasting the lumber price accurately. The novel outlook of employing both machine learning and deep learning methods shows that despite the high predictive power of both the methods, on average, deep learning models can better capture trends and provide more accurate predictions than machine learning models. The artificial neural network model is the most competitive, followed by the recurrent neural network model.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 890 ◽  
Author(s):  
Zhihao Zhang ◽  
Zhe Wu ◽  
David Rincon ◽  
Panagiotis Christofides

Machine learning has attracted extensive interest in the process engineering field, due to the capability of modeling complex nonlinear process behavior. This work presents a method for combining neural network models with first-principles models in real-time optimization (RTO) and model predictive control (MPC) and demonstrates the application to two chemical process examples. First, the proposed methodology that integrates a neural network model and a first-principles model in the optimization problems of RTO and MPC is discussed. Then, two chemical process examples are presented. In the first example, a continuous stirred tank reactor (CSTR) with a reversible exothermic reaction is studied. A feed-forward neural network model is used to approximate the nonlinear reaction rate and is combined with a first-principles model in RTO and MPC. An RTO is designed to find the optimal reactor operating condition balancing energy cost and reactant conversion, and an MPC is designed to drive the process to the optimal operating condition. A variation in energy price is introduced to demonstrate that the developed RTO scheme is able to minimize operation cost and yields a closed-loop performance that is very close to the one attained by RTO/MPC using the first-principles model. In the second example, a distillation column is used to demonstrate an industrial application of the use of machine learning to model nonlinearities in RTO. A feed-forward neural network is first built to obtain the phase equilibrium properties and then combined with a first-principles model in RTO, which is designed to maximize the operation profit and calculate optimal set-points for the controllers. A variation in feed concentration is introduced to demonstrate that the developed RTO scheme can increase operation profit for all considered conditions.


2018 ◽  
Author(s):  
Alan Rozet ◽  
Ian M Kronish ◽  
Joseph E Schwartz ◽  
Karina W Davidson

BACKGROUND Investigations into person-specific predictors of stress have typically taken either a population-level nomothetic approach or an individualized ideographic approach. Nomothetic approaches can quickly identify predictors but can be hindered by the heterogeneity of these predictors across individuals and time. Ideographic approaches may result in more predictive models at the individual level but require a longer period of data collection to identify robust predictors. OBJECTIVE Our objectives were to compare predictors of stress identified through nomothetic and ideographic models and to assess whether sequentially combining nomothetic and ideographic models could yield more accurate and actionable predictions of stress than relying on either model. At the same time, we sought to maintain the interpretability necessary to retrieve individual predictors of stress despite using nomothetic models. METHODS Data collected in a 1-year observational study of 79 participants performing low levels of exercise were used. Physical activity was continuously and objectively monitored by actigraphy. Perceived stress was recorded by participants via daily ecological momentary assessments on a mobile app. Environmental variables including daylight time, temperature, and precipitation were retrieved from the public archives. Using these environmental, actigraphy, and mobile assessment data, we built machine learning models to predict individual stress ratings using linear, decision tree, and neural network techniques employing nomothetic and ideographic approaches. The accuracy of the approaches for predicting individual stress ratings was compared based on classification errors. RESULTS Across the group of patients, an individual’s recent history of stress ratings was most heavily weighted in predicting a future stress rating in the nomothetic recurrent neural network model, whereas environmental factors such as temperature and daylight, as well as duration and frequency of bouts of exercise, were more heavily weighted in the ideographic models. The nomothetic recurrent neural network model was the highest performing nomothetic model and yielded 72% accuracy for an 80%/20% train/test split. Using the same 80/20 split, the ideographic models yielded 75% accuracy. However, restricting ideographic models to participants with more than 50 valid days in the training set, with the same 80/20 split, yielded 85% accuracy. CONCLUSIONS We conclude that for some applications, nomothetic models may be useful for yielding higher initial performance while still surfacing personalized predictors of stress, before switching to ideographic models upon sufficient data collection.


Sign in / Sign up

Export Citation Format

Share Document