scholarly journals On (Non-)Monotonicity and Phase Diagram of Finitary Random Interlacement

Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 69
Author(s):  
Zhenhao Cai ◽  
Yunfeng Xiong ◽  
Yuan Zhang

In this paper, we study the evolution of a Finitary Random Interlacement (FRI) with respect to the expected length of each fiber. In contrast to the previously proved phase transition between sufficiently large and small fiber length, for all d≥3, FRI is NOT stochastically monotone as fiber length increases. At the same time, numerical evidence still strongly supports the existence and uniqueness of a critical fiber length, which is estimated theoretically and numerically to be an inversely proportional function with respect to system intensity.


Author(s):  
L. T. Pawlicki ◽  
R. M. Siegoczyński ◽  
S. Ptasznik ◽  
K. Marszałek

AbstractThe main purpose of the experiment was a thermodynamic research with use of the electric methods chosen. The substance examined was olive oil. The paper presents the resistance, capacitive reactance, relative permittivity and resistivity of olive. Compression was applied with two mean velocities up to 450 MPa. The results were shown as functions of pressure and time and depicted on the impedance phase diagram. The three first order phase transitions have been detected. All the changes in material parameters were observed during phase transitions. The material parameters measured turned out to be the much more sensitive long-time phase transition factors than temperature. The values of material parameters and their dependence on pressure and time were compared with the molecular structure, arrangement of molecules and interactions between them. Knowledge about olive oil parameters change with pressure and its phase transitions is very important for olive oil production and conservation.



1996 ◽  
Vol 76 (23) ◽  
pp. 4336-4339 ◽  
Author(s):  
Jean-Bernard Maillet ◽  
Anne Boutin ◽  
Alain H. Fuchs


1990 ◽  
Vol 211 ◽  
Author(s):  
J. R. Linton ◽  
P. L. Berneburg ◽  
E. M. Gartner ◽  
A. Bentur

AbstractAlthough carbon fibers have high tensile strengths and are chemically inert, their application in cementitious composites is limited due to their brittleness. An image analysis technique employed to determine the length distribution of the reinforcing fibers before and after mixing in cement paste and mortar matrices indicates that substantial fiber breakage occurs during mixing. In paste mixtures, the average fiber length after mixing remains above the critical fiber length, but in mortar mixes the average fiber length falls below the critical fiber length resulting in no significant enhancement of composite flexural properties.



1992 ◽  
Vol 280 ◽  
Author(s):  
Yasumasa Tanishiro ◽  
Masahiko Fukuyamaand ◽  
Katsumichi Yagi

ABSTRACTStructure changes of Si(111)-Pb surfaces due to deposition and heat treatment are studied by REM-RHEED. Surface structures observed are summarized as a phase diagram. Formation of an incommensurate layer(α) and a phase transition between incommensurate structures of α and α' is described.





2001 ◽  
Vol 16 (17) ◽  
pp. 1129-1138 ◽  
Author(s):  
M. SADZIKOWSKI

The Nambu–Bogoliubov–de Gennes method is applied to the problem of superconducting QCD. The effective quark–quark interaction is described within the framework of the Nambu–Jona-Lasinio model. The details of the phase diagram are given as a function of the strength of the quark–quark coupling constant G′. It is found that there is no superconducting phase transition when one uses the relation between the coupling constants G′ and G of the Nambu–Jona-Lasinio model which follows from the Fierz transformation. However, for other values of G′ one can find a rich phase structure containing both the chiral and the superconducting phase transitions.



2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Abdel Nasser Tawfik ◽  
Niseem Magdy

Sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL) model and Polyakov linear sigma-model (PLSM) has been utilized in studying QCD phase-diagram. From quasi-particle model (QPM) a gluonic sector is integrated into LSM. The hadron resonance gas (HRG) model is used in calculating the thermal and dense dependence of quark-antiquark condensate. We review these four models with respect to their descriptions for the chiral phase transition. We analyze the chiral order parameter, normalized net-strange condensate, and chiral phase-diagram and compare the results with recent lattice calculations. We find that PLSM chiral boundary is located in upper band of the lattice QCD calculations and agree well with the freeze-out results deduced from various high-energy experiments and thermal models. Also, we find that the chiral temperature calculated from HRG is larger than that from PLSM. This is also larger than the freeze-out temperatures calculated in lattice QCD and deduced from experiments and thermal models. The corresponding temperature and chemical potential are very similar to that of PLSM. Although the results from PNJL and QLSM keep the same behavior, their chiral temperature is higher than that of PLSM and HRG. This might be interpreted due the very heavy quark masses implemented in both models.



ACS Omega ◽  
2018 ◽  
Vol 3 (12) ◽  
pp. 18227-18233 ◽  
Author(s):  
Junbo Gong ◽  
Xiaodong Fan ◽  
Rucheng Dai ◽  
Zhongping Wang ◽  
Zejun Ding ◽  
...  


2017 ◽  
Vol 45 ◽  
pp. 1760059
Author(s):  
Clebson A. Graeff ◽  
Débora P. Menezes

We analyse the hadron/quark phase transition described by the Nambu-Jona-Lasinio (NJL) model [quark phase] and the extended Nambu-Jona-Lasinio model (eNJL) [hadron phase]. While the original formulation of the NJL model is not capable of describing hadronic properties due to its lack of confinement, it can be extended with a scalar-vector interaction so it exhibits this property, the so-called eNJL model. As part of this analysis, we obtain the equations of state within the SU(2) versions of both models for the hadron and the quark phases and determine the binodal surface.



2021 ◽  
Vol 29 (1) ◽  
pp. 5-14
Author(s):  
D. Anchishkin ◽  
V. Gnatovskyy ◽  
D. Zhuravel ◽  
V. Karpenko

A system of interacting relativistic bosons at finite temperatures and isospin densities is studied within the framework of the Skyrme­like mean­field model. The mean field contains both attractive and repulsive terms. The consideration is taken within the framework of the Canonical Ensemble and the isospin­density dependencies of thermodynamic quantities is obtained, in particular as the phase diagrams. It is shown that in such a system, in addition to the formation of a Bose­Einstein condensate, a liquid­gas phase transition is possible. We prove that the multi­boson system develops the Bose condensate for particles of high­density component only.



Sign in / Sign up

Export Citation Format

Share Document