scholarly journals A Note on Causation versus Correlation in an Extreme Situation

Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 316
Author(s):  
X. San Liang ◽  
Xiu-Qun Yang

Recently, it has been shown that the information flow and causality between two time series can be inferred in a rigorous and quantitative sense, and, besides, the resulting causality can be normalized. A corollary that follows is, in the linear limit, causation implies correlation, while correlation does not imply causation. Now suppose there is an event A taking a harmonic form (sine/cosine), and it generates through some process another event B so that B always lags A by a phase of π/2. Here the causality is obviously seen, while by computation the correlation is, however, zero. This apparent contradiction is rooted in the fact that a harmonic system always leaves a single point on the Poincaré section; it does not add information. That is to say, though the absolute information flow from A to B is zero, i.e., TA→B=0, the total information increase of B is also zero, so the normalized TA→B, denoted as τA→B, takes the form of 00. By slightly perturbing the system with some noise, solving a stochastic differential equation, and letting the perturbation go to zero, it can be shown that τA→B approaches 100%, just as one would have expected.

2020 ◽  
Vol 8 ◽  
Author(s):  
Jun-ichi Maskawa ◽  
Koji Kuroda

This article presents a continuous cascade model of volatility formulated as a stochastic differential equation. Two independent Brownian motions are introduced as random sources triggering the volatility cascade: one multiplicatively combines with volatility; the other does so additively. Assuming that the latter acts perturbatively on the system, the model parameters are estimated by the application to an actual stock price time series. Numerical calculation of the Fokker–Planck equation derived from the stochastic differential equation is conducted using the estimated values of parameters. The results reproduce the probability density function of the empirical volatility, the multifractality of the time series, and other empirical facts.


Author(s):  
Tie Liang ◽  
Qingyu Zhang ◽  
Xiaoguang Liu ◽  
Bin Dong ◽  
Xiuling Liu ◽  
...  

Abstract Background The key challenge to constructing functional corticomuscular coupling (FCMC) is to accurately identify the direction and strength of the information flow between scalp electroencephalography (EEG) and surface electromyography (SEMG). Traditional TE and TDMI methods have difficulty in identifying the information interaction for short time series as they tend to rely on long and stable data, so we propose a time-delayed maximal information coefficient (TDMIC) method. With this method, we aim to investigate the directional specificity of bidirectional total and nonlinear information flow on FCMC, and to explore the neural mechanisms underlying motor dysfunction in stroke patients. Methods We introduced a time-delayed parameter in the maximal information coefficient to capture the direction of information interaction between two time series. We employed the linear and non-linear system model based on short data to verify the validity of our algorithm. We then used the TDMIC method to study the characteristics of total and nonlinear information flow in FCMC during a dorsiflexion task for healthy controls and stroke patients. Results The simulation results showed that the TDMIC method can better detect the direction of information interaction compared with TE and TDMI methods. For healthy controls, the beta band (14–30 Hz) had higher information flow in FCMC than the gamma band (31–45 Hz). Furthermore, the beta-band total and nonlinear information flow in the descending direction (EEG to EMG) was significantly higher than that in the ascending direction (EMG to EEG), whereas in the gamma band the ascending direction had significantly higher information flow than the descending direction. Additionally, we found that the strong bidirectional information flow mainly acted on Cz, C3, CP3, P3 and CPz. Compared to controls, both the beta-and gamma-band bidirectional total and nonlinear information flows of the stroke group were significantly weaker. There is no significant difference in the direction of beta- and gamma-band information flow in stroke group. Conclusions The proposed method could effectively identify the information interaction between short time series. According to our experiment, the beta band mainly passes downward motor control information while the gamma band features upward sensory feedback information delivery. Our observation demonstrate that the center and contralateral sensorimotor cortex play a major role in lower limb motor control. The study further demonstrates that brain damage caused by stroke disrupts the bidirectional information interaction between cortex and effector muscles in the sensorimotor system, leading to motor dysfunction.


2003 ◽  
Vol 10 (2) ◽  
pp. 381-399
Author(s):  
A. Yu. Veretennikov

Abstract We establish sufficient conditions under which the rate function for the Euler approximation scheme for a solution of a one-dimensional stochastic differential equation on the torus is close to that for an exact solution of this equation.


Sign in / Sign up

Export Citation Format

Share Document