Stabilization of impulsive fractional-order dynamic systems involving the Caputo fractional derivative of variable-order via a linear feedback controller

2021 ◽  
Vol 153 ◽  
pp. 111525
Author(s):  
Tran Minh Duc ◽  
Ngo Van Hoa
2011 ◽  
Vol 474-476 ◽  
pp. 83-88
Author(s):  
Xin Gao

The dynamics of fractional-order systems have attracted increasing attention in recent years. In this paper, we study the chaotic behaviors in a fractional-order modified van der Pol oscillator. We find that chaos exists in the fractional-order modified van der Pol oscillator with order less than 3. In addition, the lowest order we find for chaos to exist in such system is 2.4. Finally, a simple, but effective, linear feedback controller is also designed to stabilize the fractional order chaotic van der Pol oscillator.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Meriem Hamdoun ◽  
Mohamed Ben Abdallah ◽  
Mounir Ayadi ◽  
Frédéric Rotella ◽  
Irène Zambettakis

AbstractThe two degree of freedom ball balancing table (BBT) is a well-known didactic tool used to evaluate the effectiveness and performances of many control algorithms for dynamic systems. The present paper proposes to control the ball position of the BBT system via a linear feedback controller based on a functional observer. The parameters of the linear functional observer are determined by applying the direct method which requires neither a Sylvester equation resolution nor canonical transformations. The use of a digital controller has motivated the elaboration of the equations in the discrete time case. In this work, the BBT is tested in real-time to evaluate the proposed controller performances when stabilizing a ball on a reference point. This paper is a continuity of the previous work [12], in which only simulation results have been carried out.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 782
Author(s):  
Fangying Song ◽  
George Em Karniadakis

Modeling of wall-bounded turbulent flows is still an open problem in classical physics, with relatively slow progress in the last few decades beyond the log law, which only describes the intermediate region in wall-bounded turbulence, i.e., 30–50 y+ to 0.1–0.2 R+ in a pipe of radius R. Here, we propose a fundamentally new approach based on fractional calculus to model the entire mean velocity profile from the wall to the centerline of the pipe. Specifically, we represent the Reynolds stresses with a non-local fractional derivative of variable-order that decays with the distance from the wall. Surprisingly, we find that this variable fractional order has a universal form for all Reynolds numbers and for three different flow types, i.e., channel flow, Couette flow, and pipe flow. We first use existing databases from direct numerical simulations (DNSs) to lean the variable-order function and subsequently we test it against other DNS data and experimental measurements, including the Princeton superpipe experiments. Taken together, our findings reveal the continuous change in rate of turbulent diffusion from the wall as well as the strong nonlocality of turbulent interactions that intensify away from the wall. Moreover, we propose alternative formulations, including a divergence variable fractional (two-sided) model for turbulent flows. The total shear stress is represented by a two-sided symmetric variable fractional derivative. The numerical results show that this formulation can lead to smooth fractional-order profiles in the whole domain. This new model improves the one-sided model, which is considered in the half domain (wall to centerline) only. We use a finite difference method for solving the inverse problem, but we also introduce the fractional physics-informed neural network (fPINN) for solving the inverse and forward problems much more efficiently. In addition to the aforementioned fully-developed flows, we model turbulent boundary layers and discuss how the streamwise variation affects the universal curve.


1996 ◽  
Vol 118 (3) ◽  
pp. 615-619 ◽  
Author(s):  
B. C. Fabien

This paper develops a stabilizing observer-based feedback linearizing controller for a single-axis electromagnetic suspension. The controller uses only the measured output of the system, and is shown to be robust with respect to parameter uncertainty. The controller differs from other robust feedback linearizing controllers that have appeared in recent literature, because it is continuous, and non-adaptive. Lyapunov’s second method is used to prove stability and robustness of the controller. The controller has a simple structure and its gains are determined by solving two weakly coupled Riccati equations. Numerical simulations are performed to compare a linear feedback controller and the observer-based feedback linearizing controller. Results obtained demonstrate that the nonlinear controller yields superior performance when compared with the linear feedback controller. The controller synthesis technique developed in this paper is applicable to other fully feedback linearizable systems, not just electromagnetic suspensions.


Meccanica ◽  
2021 ◽  
Author(s):  
Tomasz Blaszczyk ◽  
Krzysztof Bekus ◽  
Krzysztof Szajek ◽  
Wojciech Sumelka

AbstractIn this paper, the Riesz-Caputo fractional derivative of variable order with fixed memory is considered. The studied non-integer differential operator is approximated by means of modified basic rules of numerical integration. The three proposed methods are based on polynomial interpolation: piecewise constant, piecewise linear, and piecewise quadratic interpolation. The errors generated by the described methods and the experimental rate of convergence are reported. Finally, an application of the Riesz-Caputo fractional derivative of space-dependent order in continuum mechanics is depicted.


Author(s):  
Verica Radisavljevic-Gajic ◽  
Milos Milanovic

A new technique was presented that facilitates design of independent full-state feedback controllers at the subsystem levels. Different types of local controllers, for example, eigenvalue assignment, robust, optimal (in some sense L1, H2, H∞, ...) may be used to control different subsystems. This feature has not been available for any known linear feedback controller design. In the second part of the paper, we specialize the results obtained to the three time-scale linear systems (singularly perturbed control systems) that have natural decomposition into slow, fast, and very fast subsystems. The proposed technique eliminates numerical ill-condition of the original three-time scale problems.


2017 ◽  
Vol 22 (4) ◽  
pp. 503-513 ◽  
Author(s):  
Fei Wang ◽  
Yongqing Yang

This paper investigates fractional order Barbalat’s lemma and its applications for the stability of fractional order nonlinear systems with Caputo fractional derivative at first. Then, based on the relationship between Caputo fractional derivative and Riemann-Liouville fractional derivative, fractional order Barbalat’s lemma with Riemann-Liouville derivative is derived. Furthermore, according to these results, a set of new formulations of Lyapunov-like lemmas for fractional order nonlinear systems are established. Finally, an example is presented to verify the theoretical results in this paper.


Sign in / Sign up

Export Citation Format

Share Document