scholarly journals Reversible Data Hiding in Encrypted Image Based on (7, 4) Hamming Code and UnitSmooth Detection

Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 790
Author(s):  
Lin Li ◽  
Chin-Chen Chang ◽  
Chia-Chen Lin

With the development of cloud storage and privacy protection, reversible data hiding in encrypted images (RDHEI) plays the dual role of privacy protection and secret information transmission. RDHEI has a good application prospect and practical value. The current RDHEI algorithms still have room for improvement in terms of hiding capacity, security and separability. Based on (7, 4) Hamming Code and our proposed prediction/ detection functions, this paper proposes a Hamming Code and UnitSmooth detection based RDHEI scheme, called HUD-RDHEI scheme for short. To prove our performance, two database sets—BOWS-2 and BOSSBase—have been used in the experiments, and peak signal to noise ratio (PSNR) and pure embedding rate (ER) are served as criteria to evaluate the performance on image quality and hiding capacity. Experimental results confirm that the average pure ER with our proposed scheme is up to 2.556 bpp and 2.530 bpp under BOSSBase and BOWS-2, respectively. At the same time, security and separability is guaranteed. Moreover, there are no incorrect extracted bits during data extraction phase and the visual quality of directly decrypted image is exactly the same as the cover image.

2021 ◽  
Vol 7 (12) ◽  
pp. 268
Author(s):  
Ryota Motomura ◽  
Shoko Imaizumi ◽  
Hitoshi Kiya

In this paper, we propose a new framework for reversible data hiding in encrypted images, where both the hiding capacity and lossless compression efficiency are flexibly controlled. There exist two main purposes; one is to provide highly efficient lossless compression under a required hiding capacity, while the other is to enable us to extract an embedded payload from a decrypted image. The proposed method can decrypt marked encrypted images without data extraction and derive marked images. An original image is arbitrarily divided into two regions. Two different methods for reversible data hiding in encrypted images (RDH-EI) are used in our method, and each one is used for either region. Consequently, one region can be decrypted without data extraction and also losslessly compressed using image coding standards even after the processing. The other region possesses a significantly high hiding rate, around 1 bpp. Experimental results show the effectiveness of the proposed method in terms of hiding capacity and lossless compression efficiency.


Information ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 17 ◽  
Author(s):  
Haidong Zhong ◽  
Xianyi Chen ◽  
Qinglong Tian

Recently, reversible image transformation (RIT) technology has attracted considerable attention because it is able not only to generate stego-images that look similar to target images of the same size, but also to recover the secret image losslessly. Therefore, it is very useful in image privacy protection and reversible data hiding in encrypted images. However, the amount of accessorial information, for recording the transformation parameters, is very large in the traditional RIT method, which results in an abrupt degradation of the stego-image quality. In this paper, an improved RIT method for reducing the auxiliary information is proposed. Firstly, we divide secret and target images into non-overlapping blocks, and classify these blocks into K classes by using the K-means clustering method. Secondly, we match blocks in the last (K-T)-classes using the traditional RIT method for a threshold T, in which the secret and target blocks are paired with the same compound index. Thirdly, the accessorial information (AI) produced by the matching can be represented as a secret segment, and the secret segment can be hided by patching blocks in the first T-classes. Experimental results show that the proposed strategy can reduce the AI and improve the stego-image quality effectively.


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1236 ◽  
Author(s):  
Juan ◽  
Chia-Chen ◽  
Chin-Chen

In recent years, compression steganography technology has attracted the attention of many scholars. Among all image compression method, absolute moment block truncation coding (AMBTC) is a simple and effective compression method. Most AMBTC-based reversible data hiding (RDH) schemes do not guarantee that the stego AMBTC compression codes can be translated by the conventional AMBTC decoder. In other words, they do not belong to Type I AMBTC-based RDH scheme and easily attract malicious users’ attention. To solve this problem and enhance the hiding capacity, we used (7,4) hamming code to design a Type I AMBTC-based RDH scheme in this paper. To provide the reversibility feature, we designed a prediction method and judgement mechanism to successfully select the embeddable blocks during the data embedding phase and data extraction and recovery phase. In comparing our approach with other BTC-based schemes, it is confirmed that our hiding capacity is increased while maintaining the limited size of the compression codes and acceptable image quality of the stego AMBTC-compressed images.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 664
Author(s):  
Ya Liu ◽  
Guangdong Feng ◽  
Chuan Qin ◽  
Haining Lu ◽  
Chin-Chen Chang

Nowadays, more and more researchers are interested in reversible data hiding in encrypted images (RDHEI), which can be applied in privacy protection and cloud storage. In this paper, a new RDHEI method on the basis of hierarchical quad-tree coding and multi-MSB (most significant bit) prediction is proposed. The content owner performs pixel prediction to obtain a prediction error image and explores the maximum embedding capacity of the prediction error image by hierarchical quad-tree coding before image encryption. According to the marked bits of vacated room capacity, the data hider can embed additional data into the room-vacated image without knowing the content of original image. Through the data hiding key and the encryption key, the legal receiver is able to conduct data extraction and image recovery separately. Experimental results show that the average embedding rates of the proposed method can separately reach 3.504 bpp (bits per pixel), 3.394 bpp, and 2.746 bpp on three well-known databases, BOSSBase, BOWS-2, and UCID, which are higher than some state-of-the-art methods.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Dawen Xu ◽  
Kai Chen ◽  
Rangding Wang ◽  
Shubing Su

An efficient method of completely separable reversible data hiding in encrypted images is proposed. The cover image is first partitioned into nonoverlapping blocks and specific encryption is applied to obtain the encrypted image. Then, image difference in the encrypted domain can be calculated based on the homomorphic property of the cryptosystem. The data hider, who does not know the original image content, may reversibly embed secret data into image difference based on two-dimensional difference histogram modification. Data extraction is completely separable from image decryption; that is, data extraction can be done either in the encrypted domain or in the decrypted domain, so that it can be applied to different application scenarios. In addition, data extraction and image recovery are free of any error. Experimental results demonstrate the feasibility and efficiency of the proposed scheme.


Symmetry ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 82 ◽  
Author(s):  
Li Liu ◽  
Lifang Wang ◽  
Yun-Qing Shi ◽  
Chin-Chen Chang

As cloud computing becomes popular, the security of users’ data is faced with a great threat, i.e., how to protect users’ privacy has become a pressing research topic. The combination of data hiding and encryption can provide dual protection for private data during cloud computing. In this paper, we propose a new separable data-hiding scheme for encrypted images based on block compressive sensing. First, the original uncompressed image is compressed and encrypted by block compressive sensing (BCS) using a measurement matrix, which is known as an encryption key. Then, some additional data can be hidden into the four least significant bits of measurement using the data-hiding key during the process of encoding. With an encrypted image that contains hidden data, the receiver can extract the hidden data or decrypt/reconstruct the protected private image, according to the key he/she possesses. This scheme has important features of flexible compression and anti-data-loss. The image reconstruction and data extraction are separate processes. Experimental results have proven the expected merits of the proposed scheme. Compared with the previous work, our proposed scheme reduces the complexity of the scheme and also achieves better performance in compression, anti-data-loss, and hiding capacity.


Symmetry ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 51 ◽  
Author(s):  
Kaimeng Chen ◽  
Chin-Chen Chang

In this paper, a novel, real-time, error-free, reversible data hiding method for encrypted images has been proposed. Based on the (7, 4) Hamming code, we designed an efficient encoding scheme to embed secret data into the least significant bits (LSBs) of the encrypted image. For reversibility, we designed a most significant bit (MSB) prediction scheme that can recover a portion of the modified MSBs after the image is decrypted. These MSBs can be modified to accommodate the additional information that is used to recover the LSBs. After embedding the data, the original image can be recovered with no error and the secret data can be extracted from both the encrypted image and the decrypted image. The experimental results proved that compared with existing methods, the proposed method can achieve higher embedding rate, better quality of the marked image and less execution time of data embedding. Therefore, the proposed method is suitable for real-time applications in the cloud.


Author(s):  
Dr. Rohith S ◽  
Harish V

Storage and exchange of data of the patient images are common in medical applications. To protect the information of the patient and to avoid miss handling of the patient information data hiding scheme is very much essential. Reversible Data Hiding (RDH) scheme is one such scheme paid more attention to hide the data in encrypted images, since it maintains the excellent property that the original cover can be lossless recovered after embedded data is extracted while protecting the image content’s confidentiality. In this paper initially space is reserved from the encrypted images, which may be used to embed the information later stage. Histogram shifting based Reversible Data Hiding scheme used to reserve the room before encryption process. The proposed method can achieve real reversibility, that is, data extraction and image recovery are free of any error. Experiments show that this novel method and achieves better perceptual quality.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Dawen Xu ◽  
Shubing Su

In this paper, an efficient reversible data hiding method for encrypted image based on neighborhood prediction is proposed, which includes image encryption, reversible data hiding in encrypted domain, and hidden data extraction. The cover image is first partitioned into non-overlapping blocks, and then the pixel value in each block is encrypted by modulo operation. Therefore, the linear prediction difference in the block that satisfies the specific condition is consistent before and after encryption, ensuring that data extraction is completely separable from image decryption. In addition, by using the linear weighting of three adjacent pixels in the block to predict the current pixel, the prediction accuracy can be improved. The data-hider, who does not know the original image content, may embed additional data based on prediction difference histogram modification. Data extraction and image recovery are free of any error. Experimental results demonstrate the feasibility and efficiency of the proposed scheme.


2019 ◽  
Vol 8 (4) ◽  
pp. 13-27
Author(s):  
Subhadip Mukherjee ◽  
Biswapati Jana

Data hiding techniques are very significant in the research area of information security. In this article, the authors propose a new reversible data hiding (RDH) scheme using difference expansion. At first, the original image is partitioned into 3 × 3 pixel blocks, then marked Type-one and Type-two pixels based on their coordinate values. After that, the authors find correlated pixels by computing correlation coefficients and the median of Type-one pixels. Next, secret data bits are embedded within Type-two pixels based on correlated pixels and Type-one pixels based on the stego Type-two pixels. The data extraction process successfully extracts secret data as well as recovers the cover image. The authors observed the effects of the proposed method by performing experiments on some standard cover images and found significantly better result in terms of data hiding capacity compared with existing data hiding schemes.


Sign in / Sign up

Export Citation Format

Share Document