scholarly journals Bridging Offline Functional Model Carrying Aging-Specific Growth Rate Information and Recombinant Protein Expression: Entropic Extension of Akaike Information Criterion

Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1057
Author(s):  
Renaldas Urniezius ◽  
Benas Kemesis ◽  
Rimvydas Simutis

This study presents a mathematical model of recombinant protein expression, including its development, selection, and fitting results based on seventy fed-batch cultivation experiments from two independent biopharmaceutical sites. To resolve the overfitting feature of the Akaike information criterion, we proposed an entropic extension, which behaves asymptotically like the classical criteria. Estimation of recombinant protein concentration was performed with pseudo-global optimization processes while processing offline recombinant protein concentration samples. We show that functional models including the average age of the cells and the specific growth at induction or the start of product biosynthesis are the best descriptors for datasets. We also proposed introducing a tuning coefficient that would force the modified Akaike information criterion to avoid overfitting when the designer requires fewer model parameters. We expect that a lower number of coefficients would allow the efficient maximization of target microbial products in the upstream section of contract development and manufacturing organization services in the future. Experimental model fitting was accomplished simultaneously for 46 experiments at the first site and 24 fed-batch experiments at the second site. Both locations contained 196 and 131 protein samples, thus giving a total of 327 target product concentration samples derived from the bioreactor medium.

2021 ◽  
pp. 100838
Author(s):  
Chenxu Guo ◽  
Francis K. Fordjour ◽  
Shang Jui Tsai ◽  
James C. Morrell ◽  
Stephen J. Gould

Author(s):  
Deepak B. Thimiri Govinda Raj ◽  
Niamat Ali Khan ◽  
Srisaran Venkatachalam ◽  
Sivakumar Arumugam

2014 ◽  
Vol 34 (2) ◽  
pp. 211-221 ◽  
Author(s):  
Guohua Fu ◽  
Vojislava Grbic ◽  
Shengwu Ma ◽  
Lining Tian

2015 ◽  
Vol 89 (13) ◽  
pp. 6746-6760 ◽  
Author(s):  
Nenavath Gopal Naik ◽  
Huey-Nan Wu

ABSTRACTDengue virus (DENV) nonstructural protein 4B (NS4B) is an endoplasmic reticulum (ER) membrane-associated protein, and mutagenesis studies have revealed its significance in viral genome replication. In this work, we demonstrated that NS4B is an N-glycosylated protein in virus-infected cells as well as in recombinant protein expression. NS4B is N glycosylated at residues 58 and 62 and exists in two forms, glycosylated and unglycosylated. We manipulated full-length infectious RNA clones and subgenomic replicons to generate N58Q, N62Q, and N58QN62Q mutants. Each of the single mutants had distinct effects, but the N58QN62Q mutation resulted in dramatic reduction of viral production efficiency without affecting secretion or infectivity of the virion in mammalian and mosquito C6/36 hosts. Real-time quantitative PCR (qPCR), subgenomic replicon, andtrans-complementation assays indicated that the N58QN62Q mutation affected RNA replication possibly by the loss of glycans. In addition, four intragenic mutations (S59Y, S59F, T66A, and A137T) were obtained from mammalian and/or mosquito C6/36 cell culture systems. All of these second-site mutations compensated for the replication defect of the N58QN62Q mutant without creating novel glycosylation sites.In vivoprotein stability analyses revealed that the N58QN62Q mutation alone or plus a compensatory mutation did not affect the stability of NS4B. Overall, our findings indicated that mutation of putative N-glycosylation sites affected the biological function of NS4B in the viral replication complex.IMPORTANCEThis is the first report to identify and reveal the biological significance of dengue virus (DENV) nonstructural protein 4B (NS4B) posttranslation N-glycosylation to the virus life cycle. The study demonstrated that NS4B is N glycosylated in virus-infected cells and in recombinant protein expression. NS4B is modified by glycans at Asn-58 and Asn-62. Functional characterization implied that DENV NS4B utilizes the glycosylation machinery in both mammalian and mosquito hosts. Four intragenic mutations were found to compensate for replication and subsequent viral production deficiencies without creating novel N-glycosylation sites or modulating the stabilities of the protein, suggesting that glycans may be involved in maintaining the NS4B protein conformation. NS4B glycans may be necessary elements of the viral life cycle, but compensatory mutations can circumvent their requirement. This novel finding may have broader implications in flaviviral biology as the most likely glycan at Asn-62 of NS4B is conserved in DENV serotypes and in some related flaviviruses.


2016 ◽  
Vol 15 (1) ◽  
Author(s):  
Silvia Heiss ◽  
Angelika Hörmann ◽  
Christopher Tauer ◽  
Margot Sonnleitner ◽  
Esther Egger ◽  
...  

2010 ◽  
Vol 114 (10) ◽  
pp. 809-816 ◽  
Author(s):  
Patrícia Kott Tomazett ◽  
Carlos Roberto Félix ◽  
Henrique Leonel Lenzi ◽  
Fabrícia de Paula Faria ◽  
Célia Maria de Almeida Soares ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document