scholarly journals ECG Signal Classification Using Deep Learning Techniques Based on the PTB-XL Dataset

Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1121
Author(s):  
Sandra Śmigiel ◽  
Krzysztof Pałczyński ◽  
Damian Ledziński

The analysis and processing of ECG signals are a key approach in the diagnosis of cardiovascular diseases. The main field of work in this area is classification, which is increasingly supported by machine learning-based algorithms. In this work, a deep neural network was developed for the automatic classification of primary ECG signals. The research was carried out on the data contained in a PTB-XL database. Three neural network architectures were proposed: the first based on the convolutional network, the second on SincNet, and the third on the convolutional network, but with additional entropy-based features. The dataset was divided into training, validation, and test sets in proportions of 70%, 15%, and 15%, respectively. The studies were conducted for 2, 5, and 20 classes of disease entities. The convolutional network with entropy features obtained the best classification result. The convolutional network without entropy-based features obtained a slightly less successful result, but had the highest computational efficiency, due to the significantly lower number of neurons.

Author(s):  
P. Rama Santosh Naidu ◽  
K.Venkata Ramana ◽  
G. Lavanya Devi

In recent days Machine Learning has become major study aspect in various applications that includes medical care where convenient discovery of anomalies in ECG signals plays an important role in monitoring patient's condition regularly. This study concentrates on various MachineLearning techniques applied for classification of ECG signals which include CNN and RNN. In the past few years, it is being observed that CNN is playing a dominant role in feature extraction from which we can infer that machine learning techniques have been showing accuracy and progress in classification of ECG signals. Therefore, this paper includes Convolutional Neural Network and Recurrent Neural Network which is being classified into two types for better results from considerably increased depth.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1827
Author(s):  
Dengao Li ◽  
Hang Wu ◽  
Jumin Zhao ◽  
Ye Tao ◽  
Jian Fu

Nowadays, a series of social problems caused by cardiovascular diseases are becoming increasingly serious. Accurate and efficient classification of arrhythmias according to an electrocardiogram is of positive significance for improving the health status of people all over the world. In this paper, a new neural network structure based on the most common 12-lead electrocardiograms was proposed to realize the classification of nine arrhythmias, which consists of Inception and GRU (Gated Recurrent Units) primarily. Moreover, a new attention mechanism is added to the model, which makes sense for data symmetry. The average F1 score obtained from three different test sets was over 0.886 and the highest was 0.919. The accuracy, sensitivity, and specificity obtained from the PhysioNet public database were 0.928, 0.901, and 0.984, respectively. As a whole, this deep neural network performed well in the multi-label classification of 12-lead ECG signals and showed better stability than other methods in the case of more test samples.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2648
Author(s):  
Muhammad Aamir ◽  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
Muhammad Zeeshan Azam ◽  
...  

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural disasters still faces issues due to the complex and imbalanced structures of images. To tackle this problem, we propose a multilayered deep convolutional neural network. The proposed model works in two blocks: Block-I convolutional neural network (B-I CNN), for detection and occurrence of disasters, and Block-II convolutional neural network (B-II CNN), for classification of natural disaster intensity types with different filters and parameters. The model is tested on 4428 natural images and performance is calculated and expressed as different statistical values: sensitivity (SE), 97.54%; specificity (SP), 98.22%; accuracy rate (AR), 99.92%; precision (PRE), 97.79%; and F1-score (F1), 97.97%. The overall accuracy for the whole model is 99.92%, which is competitive and comparable with state-of-the-art algorithms.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 264
Author(s):  
Kaisa Liimatainen ◽  
Riku Huttunen ◽  
Leena Latonen ◽  
Pekka Ruusuvuori

Identifying localization of proteins and their specific subpopulations associated with certain cellular compartments is crucial for understanding protein function and interactions with other macromolecules. Fluorescence microscopy is a powerful method to assess protein localizations, with increasing demand of automated high throughput analysis methods to supplement the technical advancements in high throughput imaging. Here, we study the applicability of deep neural network-based artificial intelligence in classification of protein localization in 13 cellular subcompartments. We use deep learning-based on convolutional neural network and fully convolutional network with similar architectures for the classification task, aiming at achieving accurate classification, but importantly, also comparison of the networks. Our results show that both types of convolutional neural networks perform well in protein localization classification tasks for major cellular organelles. Yet, in this study, the fully convolutional network outperforms the convolutional neural network in classification of images with multiple simultaneous protein localizations. We find that the fully convolutional network, using output visualizing the identified localizations, is a very useful tool for systematic protein localization assessment.


2021 ◽  
Author(s):  
Anh Nguyen ◽  
Khoa Pham ◽  
Dat Ngo ◽  
Thanh Ngo ◽  
Lam Pham

This paper provides an analysis of state-of-the-art activation functions with respect to supervised classification of deep neural network. These activation functions comprise of Rectified Linear Units (ReLU), Exponential Linear Unit (ELU), Scaled Exponential Linear Unit (SELU), Gaussian Error Linear Unit (GELU), and the Inverse Square Root Linear Unit (ISRLU). To evaluate, experiments over two deep learning network architectures integrating these activation functions are conducted. The first model, basing on Multilayer Perceptron (MLP), is evaluated with MNIST dataset to perform these activation functions.Meanwhile, the second model, likely VGGish-based architecture, is applied for Acoustic Scene Classification (ASC) Task 1A in DCASE 2018 challenge, thus evaluate whether these activation functions work well in different datasets as well as different network architectures.


Author(s):  
Suraj Kumar Nayak ◽  
Ipsita Panda ◽  
Biswajeet Champaty ◽  
Niraj Bagh ◽  
Kunal Pal ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Sufian A. Badawi ◽  
Muhammad Moazam Fraz

The arterioles and venules (AV) classification of retinal vasculature is considered as the first step in the development of an automated system for analysing the vasculature biomarker association with disease prognosis. Most of the existing AV classification methods depend on the accurate segmentation of retinal blood vessels. Moreover, the unavailability of large-scale annotated data is a major hindrance in the application of deep learning techniques for AV classification. This paper presents an encoder-decoder based fully convolutional neural network for classification of retinal vasculature into arterioles and venules, without requiring the preliminary step of vessel segmentation. An optimized multiloss function is used to learn the pixel-wise and segment-wise retinal vessel labels. The proposed method is trained and evaluated on DRIVE, AVRDB, and a newly created AV classification dataset; and it attains 96%, 98%, and 97% accuracy, respectively. The new AV classification dataset is comprised of 700 annotated retinal images, which will offer the researchers a benchmark to compare their AV classification results.


Author(s):  
Aleksei Dudchenko ◽  
Georgy Kopanitsa

This paper is an extension of the work originally presented in the 16th International Conference on Wearable, Micro and Nano Technologies for Personalized Health. Despite using electronic medical records, free narrative text is still widely used for medical records. To make data from texts available for decision support systems, supervised machine learning algorithms might be successfully applied. In this work, we developed and compared a prototype of a medical data extraction system based on different artificial neural network architectures to process free medical texts in the Russian language. Three classifiers were applied to extract entities from snippets of text. Multi-layer perceptron (MLP) and convolutional neural network (CNN) classifiers showed similar results to all three embedding models. MLP exceeded convolutional network on pipelines that used the embedding model trained on medical records with preliminary lemmatization. Nevertheless, the highest F-score was achieved by CNN. CNN slightly exceeded MLP when the biggest word2vec model was applied (F-score 0.9763).


Sign in / Sign up

Export Citation Format

Share Document