Relationships in Diversity, Vegetation Indexes and Water Area in Terminal Lake of the Tarim River, Northwest China

Ecologies ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 332-344
Author(s):  
Xinfeng Zhao ◽  
Tao Lin ◽  
Hailiang Xu ◽  
Ai Shajiang Aili ◽  
Wanyu Zhao ◽  
...  

To examine the variation in water and vegetation coverage areas, the groundwater level and plant diversity in the terminal lake of the Tarim River, northwest China, both the monitoring data of a field survey consisting of surface samples and remote sensing data for 20 years (2000–2019) were analyzed by using field survey and indoor remote sensing methods. The results showed that (1): from 2000 to 2019, water and vegetation areas increased significantly, especially the trend of vegetation areas becoming more significant, with an average annual increase of 13.9 km2/a; (2): the plant diversity increased first and then decreased; the species richness and Pielou index in the study area were 9.0 and 0.80 in 2005, but only 2.00 and 0.08 in 2000, respectively; species composition tends to be simplified; (3): with the increase in the lake area, the groundwater level showed an up-lifted trend; the correlation between the two was significant, but there was a lag in the response of the groundwater level.

2021 ◽  
Vol 13 (19) ◽  
pp. 3845
Author(s):  
Guangbo Ren ◽  
Jianbu Wang ◽  
Yunfei Lu ◽  
Peiqiang Wu ◽  
Xiaoqing Lu ◽  
...  

Climate change has profoundly affected global ecological security. The most vulnerable region on Earth is the high-latitude Arctic. Identifying the changes in vegetation coverage and glaciers in high-latitude Arctic coastal regions is important for understanding the process and impact of global climate change. Ny-Ålesund, the northern-most human settlement, is typical of these coastal regions and was used as a study site. Vegetation and glacier changes over the past 35 years were studied using time series remote sensing data from Landsat 5/7/8 acquired in 1985, 1989, 2000, 2011, 2015 and 2019. Site survey data in 2019, a digital elevation model from 2009 and meteorological data observed from 1985 to 2019 were also used. The vegetation in the Ny-Ålesund coastal zone showed a trend of declining and then increasing, with a breaking point in 2000. However, the area of vegetation with coverage greater than 30% increased over the whole study period, and the wetland moss area also increased, which may be caused by the accelerated melting of glaciers. Human activities were responsible for the decline in vegetation cover around Ny-Ålesund owing to the construction of the town and airport. Even in areas with vegetation coverage of only 13%, there were at least five species of high-latitude plants. The melting rate of five major glaciers in the study area accelerated, and approximately 82% of the reduction in glacier area occurred after 2000. The elevation of the lowest boundary of the five glaciers increased by 50–70 m. The increase in precipitation and the average annual temperature after 2000 explains the changes in both vegetation coverage and glaciers in the study period.


2018 ◽  
Vol 5 (2) ◽  
pp. 215
Author(s):  
Md Arafat Hassan ◽  
Rakibul Islam ◽  
Rehnuma Mahjabin

This paper has been developed to capture the land coverage change in Gazipur Sadar Upazila with the help of remote sensing data of 44 years from 1973 to 2017. After acquiring the study area image of 1973, 1991, 2006 and 2017 supervised classification method has been used to get the accurate information from the satellite image and the whole outcome has been transformed into measurable unit (sq km) and graphs. The accuracy of land coverage was ranged from 85% to 89%. The outcome says that the acceleration of economic growth and pressure of huge population took a heavy toll on the vegetation coverage which decreased -199.7%. People are destroying vegetation coverage for building up settlements and infrastructure. In the year 2017, the map shows that the built-up area increased 312.9% for industry, settlement and agricultural purpose. Moreover agricultural land also drops down from 42% to 32%.  The rapid rate of decreasing vegetation coverage and small amount of existing vegetation coverage only 57 sq km (in 2017) is a red alert for the region. The Sal forest and other special flora species of that region is valuable resource for environment. This paper shed light on the fact that it is urgent to protect vegetation coverage so it will help the authority to make good policies and use other techniques to save vegetation coverage.


Sign in / Sign up

Export Citation Format

Share Document