scholarly journals Android Malware Detection Based on Structural Features of the Function Call Graph

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 186
Author(s):  
Yang Yang ◽  
Xuehui Du ◽  
Zhi Yang ◽  
Xing Liu

The openness of Android operating system not only brings convenience to users, but also leads to the attack threat from a large number of malicious applications (apps). Thus malware detection has become the research focus in the field of mobile security. In order to solve the problem of more coarse-grained feature selection and larger feature loss of graph structure existing in the current detection methods, we put forward a method named DGCNDroid for Android malware detection, which is based on the deep graph convolutional network. Our method starts by generating a function call graph for the decompiled Android application. Then the function call subgraph containing the sensitive application programming interface (API) is extracted. Finally, the function call subgraphs with structural features are trained as the input of the deep graph convolutional network. Thus the detection and classification of malicious apps can be realized. Through experimentation on a dataset containing 11,120 Android apps, the method proposed in this paper can achieve detection accuracy of 98.2%, which is higher than other existing detection methods.

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Xin Wang ◽  
Dafang Zhang ◽  
Xin Su ◽  
Wenjia Li

In recent years, Android malware has continued to grow at an alarming rate. More recent malicious apps’ employing highly sophisticated detection avoidance techniques makes the traditional machine learning based malware detection methods far less effective. More specifically, they cannot cope with various types of Android malware and have limitation in detection by utilizing a single classification algorithm. To address this limitation, we propose a novel approach in this paper that leverages parallel machine learning and information fusion techniques for better Android malware detection, which is named Mlifdect. To implement this approach, we first extract eight types of features from static analysis on Android apps and build two kinds of feature sets after feature selection. Then, a parallel machine learning detection model is developed for speeding up the process of classification. Finally, we investigate the probability analysis based and Dempster-Shafer theory based information fusion approaches which can effectively obtain the detection results. To validate our method, other state-of-the-art detection works are selected for comparison with real-world Android apps. The experimental results demonstrate that Mlifdect is capable of achieving higher detection accuracy as well as a remarkable run-time efficiency compared to the existing malware detection solutions.


Author(s):  
Suhaib Jasim Hamdi ◽  
Ibrahim Mahmood Ibrahim ◽  
Naaman Omar ◽  
Omar M. Ahmed ◽  
Zryan Najat Rashid ◽  
...  

Android is now the world's (or one of the world’s) most popular operating system. More and more malware assaults are taking place in Android applications. Many security detection techniques based on Android Apps are now available. The open environmental feature of the Android environment has given Android an extensive appeal in recent years. The growing number of mobile devices are incorporated in many aspects of our everyday lives. This  paper gives a detailed comparison that summarizes and analyses various detection techniques. This work examines the current status of Android malware detection methods, with an emphasis on Machine Learning-based classifiers for detecting malicious software on Android devices. Android has a huge number of apps that may be downloaded and used for free. Consequently, Android phones are more susceptible to malware. As a result, additional research has been done in order to develop effective malware detection methods. To begin, several of the currently available Android malware detection approaches are carefully examined and classified based on their detection methodologies. This study examines a wide range of machine-learning-based methods to detecting Android malware covering both types dynamic and static.


2020 ◽  
Vol 1693 ◽  
pp. 012080
Author(s):  
Tong Lu ◽  
Xiaoyuan Liu ◽  
Jingwei Chen ◽  
Naitian Hu ◽  
Bo Liu

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yubo Song ◽  
Yijin Geng ◽  
Junbo Wang ◽  
Shang Gao ◽  
Wei Shi

Since a growing number of malicious applications attempt to steal users’ private data by illegally invoking permissions, application stores have carried out many malware detection methods based on application permissions. However, most of them ignore specific permission combinations and application categories that affect the detection accuracy. The features they extracted are neither representative enough to distinguish benign and malicious applications. For these problems, an Android malware detection method based on permission sensitivity is proposed. First, for each kind of application categories, the permission features and permission combination features are extracted. The sensitive permission feature set corresponding to each category label is then obtained by the feature selection method based on permission sensitivity. In the following step, the permission call situation of the application to be detected is compared with the sensitive permission feature set, and the weight allocation method is used to quantify this information into numerical features. In the proposed method of malicious application detection, three machine-learning algorithms are selected to construct the classifier model and optimize the parameters. Compared with traditional methods, the proposed method consumed 60.94% less time while still achieving high accuracy of up to 92.17%.


2021 ◽  
Author(s):  
Vinayaka K V ◽  
Jaidhar C D

<pre> The popularity of the Android Operating System in the smartphone market has given rise to lots of Android malware. To accurately detect these malware, many of the existing works use machine learning and deep learning-based methods, in which feature extraction methods were used to extract fixed-size feature vectors using the files present inside the Android Application Package (APK). Recently, Graph Convolutional Network (GCN) based methods applied on the Function Call Graph (FCG) extracted from the APK are gaining momentum in Android malware detection, as GCNs are effective at learning tasks on variable-sized graphs such as FCG, and FCG sufficiently captures the structure and behaviour of an APK. However, the FCG lacks information about callback methods as the Android Application Programming Interface (API) is event-driven. This paper proposes enhancing the FCG to eFCG (enhanced-FCG) using the callback information extracted using Android Framework Space Analysis to overcome this limitation. Further, we add permission - API method relationships to the eFCG. The eFCG is reduced using node contraction based on the classes to get R-eFCG (Reduced eFCG) to improve the generalisation ability of the Android malware detection model. The eFCG and R-eFCG are then given as the inputs to the Heterogeneous GCN models to determine whether the APK file from which they are extracted is malicious or not. To test the effectiveness of eFCG and R-eFCG, we conducted an ablation study by removing their various components. To determine the optimal neighbourhood size for GCN, we experimented with a varying number of GCN layers and found that the Android malware detection model using R-eFCG with all its components with four convolution layers achieved maximum accuracy of 96.28%.</pre>


2021 ◽  
Author(s):  
Vinayaka K V ◽  
Jaidhar C D

<pre> The popularity of the Android Operating System in the smartphone market has given rise to lots of Android malware. To accurately detect these malware, many of the existing works use machine learning and deep learning-based methods, in which feature extraction methods were used to extract fixed-size feature vectors using the files present inside the Android Application Package (APK). Recently, Graph Convolutional Network (GCN) based methods applied on the Function Call Graph (FCG) extracted from the APK are gaining momentum in Android malware detection, as GCNs are effective at learning tasks on variable-sized graphs such as FCG, and FCG sufficiently captures the structure and behaviour of an APK. However, the FCG lacks information about callback methods as the Android Application Programming Interface (API) is event-driven. This paper proposes enhancing the FCG to eFCG (enhanced-FCG) using the callback information extracted using Android Framework Space Analysis to overcome this limitation. Further, we add permission - API method relationships to the eFCG. The eFCG is reduced using node contraction based on the classes to get R-eFCG (Reduced eFCG) to improve the generalisation ability of the Android malware detection model. The eFCG and R-eFCG are then given as the inputs to the Heterogeneous GCN models to determine whether the APK file from which they are extracted is malicious or not. To test the effectiveness of eFCG and R-eFCG, we conducted an ablation study by removing their various components. To determine the optimal neighbourhood size for GCN, we experimented with a varying number of GCN layers and found that the Android malware detection model using R-eFCG with all its components with four convolution layers achieved maximum accuracy of 96.28%.</pre>


Author(s):  
Jun Guan ◽  
Huiying Liu ◽  
Baolei Mao ◽  
Xu Jiang

Aiming at the problem that the permission-based detection is too coarse-grained, a malware detection method based on sensitive application program interface(API) pairing is proposed. The method decompiles the application to extract the sensitive APIs corresponding to the dangerous permissions, and uses the pairing of the sensitive APIs to construct the undirected graph of malicious applications and undirected graph of benign applications. According to the importance of sensitive APIs in malware and benign applications, different weights on the same edge in the different graphs are assigned to detect Android malicious applications. Experimental results show that the proposed method can effectively detect Android malicious applications and has practical significance.


Sign in / Sign up

Export Citation Format

Share Document