scholarly journals Human Signature Identification Using IoT Technology and Gait Recognition

Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 852
Author(s):  
Mihaela Hnatiuc ◽  
Oana Geman ◽  
Andrei George Avram ◽  
Deepak Gupta ◽  
K. Shankar

This study aimed to develop an autonomous design system for recognizing the subject by gait posture. Gait posture is a type of non-verbal communication characteristic of each person, and can be considered a signature used in identification. This system can be used for diagnosis. The system helps aging or disabled subjects to identify incorrect posture to recover the gait. Gait posture gives information for subject identification using leg movements and step distance as characteristic parameters. In the current study, the inertial measurement units (IMUs) located in a mobile phone were used to provide information about the movement of the upper and lower leg parts. A resistive flex sensor (RFS) was used to obtain information about the foot contact with the ground. The data were collected from a target group comprising subjects of different age, height, and mass. A comparative study was undertaken to identify the subject after the gait posture. Statistical analysis and a machine learning algorithm were used for data processing. The errors obtained after training data are presented at the end of the paper and the obtained results are encouraging. This article proposes a method of acquiring data available to anyone by using indispensable devices purchased by all users such as mobile phones.

Author(s):  
Ryan S. McGinnis ◽  
Stephen M. Cain ◽  
Steven P. Davidson ◽  
Rachel V. Vitali ◽  
Scott G. McLean ◽  
...  

Up-down and rifle aiming maneuvers are common tasks employed by soldiers and athletes. The movements underlying these tasks largely determine performance success, which motivates the need for a noninvasive and portable means for movement quantification. We answer this need by exploiting body-worn and rifle-mounted miniature inertial measurement units (IMUs) for measuring torso and rifle motions during up-down and aiming tasks. The IMUs incorporate MEMS accelerometers and angular rate gyros that measure translational acceleration and angular velocity, respectively. Both sensors enable independent estimates of the orientation of the IMU and thus, the orientation of a subject’s torso and rifle. Herein, we establish the accuracy of a complementary filter which fuses these estimates for tracking torso and rifle orientation by comparing IMU-derived and motion capture-derived (MOCAP) torso pitch angles and rifle elevation and azimuthal angles during four up-down and rifle aiming trials for each of 16 subjects (64 trials total). The up-down trials consist of five maximal effort get-down-get-up cycles (from standing to lying prone back to standing), while the rifle aiming trials consist of rapidly aiming five times at two targets 15 feet from the subject and 180 degrees apart. Results reveal that this filtering technique yields warfighter torso pitch angles that remain within 0.55 degrees of MOCAP estimates and rifle elevation and azimuthal angles that remain within 0.44 and 1.26 degrees on average, respectively, for the 64 trials analyzed. We further examine potential remaining error sources and limitations of this filtering approach. These promising results point to the future use of this technology for quantifying motion in naturalistic environments. Their use may be extended to other applications (e.g., sports training and remote health monitoring) where noninvasive, inexpensive, and accurate methods for reliable orientation estimation are similarly desired.


2019 ◽  
Author(s):  
Andrew Medford ◽  
Shengchun Yang ◽  
Fuzhu Liu

Understanding the interaction of multiple types of adsorbate molecules on solid surfaces is crucial to establishing the stability of catalysts under various chemical environments. Computational studies on the high coverage and mixed coverages of reaction intermediates are still challenging, especially for transition-metal compounds. In this work, we present a framework to predict differential adsorption energies and identify low-energy structures under high- and mixed-adsorbate coverages on oxide materials. The approach uses Gaussian process machine-learning models with quantified uncertainty in conjunction with an iterative training algorithm to actively identify the training set. The framework is demonstrated for the mixed adsorption of CH<sub>x</sub>, NH<sub>x</sub> and OH<sub>x</sub> species on the oxygen vacancy and pristine rutile TiO<sub>2</sub>(110) surface sites. The results indicate that the proposed algorithm is highly efficient at identifying the most valuable training data, and is able to predict differential adsorption energies with a mean absolute error of ~0.3 eV based on <25% of the total DFT data. The algorithm is also used to identify 76% of the low-energy structures based on <30% of the total DFT data, enabling construction of surface phase diagrams that account for high and mixed coverage as a function of the chemical potential of C, H, O, and N. Furthermore, the computational scaling indicates the algorithm scales nearly linearly (N<sup>1.12</sup>) as the number of adsorbates increases. This framework can be directly extended to metals, metal oxides, and other materials, providing a practical route toward the investigation of the behavior of catalysts under high-coverage conditions.


Author(s):  
Dan Luo

Background: As known that the semi-supervised algorithm is a classical algorithm in semi-supervised learning algorithm. Methods: In the paper, it proposed improved cooperative semi-supervised learning algorithm, and the algorithm process is presented in detailed, and it is adopted to predict unlabeled electronic components image. Results: In the experiments of classification and recognition of electronic components, it show that through the method the accuracy the proposed algorithm in electron device image recognition can be significantly improved, the improved algorithm can be used in the actual recognition process . Conclusion: With the continuous development of science and technology, machine vision and deep learning will play a more important role in people's life in the future. The subject research based on the identification of the number of components is bound to develop towards the direction of high precision and multi-dimension, which will greatly improve the production efficiency of electronic components industry.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 126
Author(s):  
Sharu Theresa Jose ◽  
Osvaldo Simeone

Meta-learning, or “learning to learn”, refers to techniques that infer an inductive bias from data corresponding to multiple related tasks with the goal of improving the sample efficiency for new, previously unobserved, tasks. A key performance measure for meta-learning is the meta-generalization gap, that is, the difference between the average loss measured on the meta-training data and on a new, randomly selected task. This paper presents novel information-theoretic upper bounds on the meta-generalization gap. Two broad classes of meta-learning algorithms are considered that use either separate within-task training and test sets, like model agnostic meta-learning (MAML), or joint within-task training and test sets, like reptile. Extending the existing work for conventional learning, an upper bound on the meta-generalization gap is derived for the former class that depends on the mutual information (MI) between the output of the meta-learning algorithm and its input meta-training data. For the latter, the derived bound includes an additional MI between the output of the per-task learning procedure and corresponding data set to capture within-task uncertainty. Tighter bounds are then developed for the two classes via novel individual task MI (ITMI) bounds. Applications of the derived bounds are finally discussed, including a broad class of noisy iterative algorithms for meta-learning.


2017 ◽  
Vol 3 (1) ◽  
pp. 7-10 ◽  
Author(s):  
Jan Kuschan ◽  
Henning Schmidt ◽  
Jörg Krüger

Abstract:This paper presents an analysis of two distinct human lifting movements regarding acceleration and angular velocity. For the first movement, the ergonomic one, the test persons produced the lifting power by squatting down, bending at the hips and knees only. Whereas performing the unergonomic one they bent forward lifting the box mainly with their backs. The measurements were taken by using a vest equipped with five Inertial Measurement Units (IMU) with 9 Dimensions of Freedom (DOF) each. In the following the IMU data captured for these two movements will be evaluated using statistics and visualized. It will also be discussed with respect to their suitability as features for further machine learning classifications. The reason for observing these movements is that occupational diseases of the musculoskeletal system lead to a reduction of the workers’ quality of life and extra costs for companies. Therefore, a vest, called CareJack, was designed to give the worker a real-time feedback about his ergonomic state while working. The CareJack is an approach to reduce the risk of spinal and back diseases. This paper will also present the idea behind it as well as its main components.


2021 ◽  
pp. 1-19
Author(s):  
Thomas Rietveld ◽  
Barry S. Mason ◽  
Victoria L. Goosey-Tolfrey ◽  
Lucas H. V. van der Woude ◽  
Sonja de Groot ◽  
...  

2020 ◽  
Vol 6 (3) ◽  
pp. 237-240
Author(s):  
Simon Beck ◽  
Bernhard Laufer ◽  
Sabine Krueger-Ziolek ◽  
Knut Moeller

AbstractDemographic changes and increasing air pollution entail that monitoring of respiratory parameters is in the focus of research. In this study, two customary inertial measurement units (IMUs) are used to measure the breathing rate by using quaternions. One IMU was located ventral, and one was located dorsal on the thorax with a belt. The relative angle between the quaternion of each IMU was calculated and compared to the respiratory frequency obtained by a spirometer, which was used as a reference. A frequency analysis of both signals showed that the obtained respiratory rates vary slightly (less than 0.2/min) between the two systems. The introduced belt can analyse the respiratory rate and can be used for surveillance tasks in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document