Impact of Rapid-Thermal-Annealing Temperature on the Polarization Characteristics of a PZT-Based Ferroelectric Capacitor
A metal-ferroelectric-metal (MFM) capacitor was fabricated to investigate the effect of the rate-of-change of temperature in the rapid thermal annealing (RTA) process on the physical properties of the MFM capacitor’s ferroelectric layer [lead zirconate oxide (PZT)]. Remnant polarization (2 × Pr) is measured and monitored while performing the RTA process at 500 °C–700 °C. It turned out that, for a given target/final temperature in the RTA process, 2Pr of the ferroelectric layer decreases with a higher rate-of-change of temperature. This can provide a way to adjust the properties of the PZT layer, depending on the RTA process condition (i.e., using various rate-of-changes of temperature) for a given final/target temperature.